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GENERAL INTRODUCTION 

 

Organic syntheses, which mainly constitute carbon-carbon and carbon-heteroatom 

bonds formation, is important because these bonds are found in practically all organic 

compounds that exhibit important biological, pharmaceutical and material properties. Due to 

the importance of these bonds, there has always been a need to develop and improve mild 

and general methods for their synthesis. In this context, we have investigated different 

strategies towards carbon-carbon and carbon-heteroatom bond formation which can then be 

utilized to develop various biologically active systems in concise ways. Further utilities of 

these routes have been shown by synthesizing various natural products. 

Chapter one describes the use of novel phosphazene base P4-t-Bu towards the 

synthesis of biologically important indolo[2,1-a]isoquinolines and 2,3-diarylbenzo[b]furans 

and some other heterocyclic systems in a very concise way using commercially available or 

readily makeable organic intermediates. 

Chapter two describes the development and structure-activity relationship (SAR) of 

pyrido[2,3-d]pyrimidines as effective inhibitors of the Ableson Kinase. This chapter also 

discusses synthesis and tagging of cyanin dyes with organic molecules for fluorescent 

studies. 

Chapter three describes various attempts towards the synthesis of compounds 

belonging to flavonoid family like aurones, flavones and flavonols and outlines the 

development of a divergent approach to flavones via dihaloacrylic acid intermediates. 
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CHAPTER 1. Phosphazene base P4-t-Bu: Application towards the 

synthesis of various heterocylic compounds 

 

Introduction 

Neutral nitrogen bases such as sterically hindered tertiary amines or 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU) play an important role in organic synthesis.
1a-b

 The 

use of peralkylated sterically hindered amidine and guanidine bases has also been reported. 

In order to extend the collection of readily accessible, broadly applicable bases, Schwesinger 

and coworkers developed and arranged members of novel class of kinetically highly active 

uncharged phosphazene bases in order of strength and steric hindrance, to higher pKa values
 

(Figure 1).
1a-b

 Among the strongest of these phosphazene bases, P4-t-Bu is most readily 

available.
1a

 

 

 

Figure 1: Structures and comparison of pKa values of DBU and various phosphazene bases
1b

 

 

P4-t-Bu (1) is synthesized starting from readily available phosphorous pentachloride 

(Scheme 1). Hexamethylphosphorotriamidate 3 is commercially available and can also be 

prepared by treating phosphorous pentachloride with dimethylamine, followed by the action 

of ammonia and potassium methoxide.  Similarly, tert-butylphosphorimidic trichloride 4 can 

be prepared by condensing tert-butylamine hydrochloride with phosphorous pentachloride 
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(Scheme 1). This sterically hindered base can then be prepared on a mole scale in a one-pot 

process from combining three equivalents of 3 and one equivalent of 4 and isolating as the 

HBF4 or HClO4 salts, which are only sparingly soluble in water. P4-t-Bu (1) then can be 

liberated by using KNH2 (Scheme 1).
2
 The strongly hygroscopic, colorless, crystalline base 1 

is unusually stable and is very soluble in the conventional solvents. In 1.0 M D2O solution, 1 

remains unchanged even at about 160 
o
C over twenty hours; however, aqueous mineral acids 

readily hydrolyze it.
3
 

 

 

Scheme 1: Synthesis of P4-t-Bu 

 

P4-t-Bu is probably the strongest neutral nitrogen base known at present; in THF 

solution, it is comparable to potassium(trimethylsilyl)aminde, but less nucleophilic. It 

deprotonates acetone to a large extent and establishes a clear equilibrium with 

triphenylmethane. Due to this extremely high basicity P4-t-Bu has been used in a variety of 

different types of reaction systems. 

In the presence of alkylating agents, in situ alkylation of low acidic substrates in 

concentrated (ca. 0.5 M) THF solution is generally extremely rapid on (gradual) addition of 

P4-t-Bu at -100 
o
C to -78 

o
C. Due to the high solubilizing power of phosphazene bases, 

solubility problems are scarce. Separation of products from salts of the base is easily 

achieved, e.g. by direct precipitation of its halide salts with diethyl ether or benzene, by 

extraction (CH2Cl2) or precipitation (NaBF4) of salts from aqueous solution, or by filtration 

over silica gel. The very low Lewis acidity of the huge cation contrasts sharply with the 

characteristics of lithium amide bases. Thus Lewis acid-catalyzed side reactions, e.g. aldol or 
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ester condensations in alkylations of enolates, are effectively suppressed; even β-lactones are 

easily mono- or peralkylated (Scheme 2, eq 1).
3
 In cases where the corresponding lithium 

derivatives decompose entirely via β-alkoxide elimination, „naked‟ enolates of β-alkoxy 

esters undergo clean alkylation. Using bases like P4-t-Bu enhances the formation of 

monoalkylation product considerably (Scheme 2, eq 2).
3
 This tendency also holds for 

selective monoalkylation of secondary carbon centers. Even sterically congested quaternary 

centers are formed with great ease (Scheme 2, eq 3).
4
 Alkylation of nitriles is not 

complicated by Thorpe condensation, as observed with LDA as base. Alkylation of 1,2-

dinitriles with no elimination of hydrocyanic acid (Scheme 2, eq 4) is achieved in high yield.
5
 

 

 

Scheme 2: P4-t-Bu reactions 
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Deprotonative functionalization of aromatics is one of the most useful 

transformations in organic synthesis, in which functionalized aromatic rings are directly 

generated via aromatic carbanions. P4-t-Bu has also been extensively used for deprotonative 

functionalization of aromatic systems as shown by Kondo and coworkers.
1b, 6a

 Traditionally, 

highly reactive metallic bases such as alkyllithiums or lithium dialkylamides are employed to 

generate arylmetals that function as aromatic carbanions. A lot of studies have focused on the 

chemo- and regioselectivity of this reaction. The use of highly reactive metallic bases often 

has undesirable side reactions such as nucleophilic attack of the intermediary aryl-metals on 

the electrophilic functional groups of the substrate. Therefore, the development of highly 

chemoselective reactions has been a challenge. In their research, Kondo and coworkers have 

examined the deprotonative functionalization of aromatics with P4-t-Bu base because of its 

extreme basicity and low nucleophilicity, which allows for highly chemoselective reactions. 

Also, unlike Lewis acidic metal cation of cationic bases, the nonmetallic P4-t-Bu base cannot 

function as a Lewis acid. Therefore, the reaction using P4-t-Bu base proceeds without the 

“coordination mechanism”, and the reaction with unique regioselectivity is expected and 

observed.
1b, 6a

 

In the first example to explore the deprotonative functionalization of P4-t-Bu, the 

reactions of benzothiazole 15 were examined. When 15 was reacted with P4-t-Bu in the 

presence of benzophenone in THF, adduct 16 was formed in 95% yield. Similar reactions of 

15 with benzaldehyde and benzyl bromide gave addition products 17 and 18, respectively, in 

reasonable yields (Scheme 3). 

 

 

Scheme 3: Deprotonative 1,2-Addition of Benzothiazole with P4-t-Bu
1b, 6a

 

 

Deprotonative functionalizations of π-deficient nitrogen heteroaromatics, which have 

relatively acidic ring-protons, were also reported. meta-Bromopyridine 19 was reacted with 
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P4-t-Bu in the presence of benzophenone resulting in the deprotonative functionalization 

taking place at the expected 4-position to give 20a in only 3% yield, but was enhanced to 

77% by using ZnI2 as additive. Reactions with benzaldehyde and pivalaldehyde under similar 

conditions gave expected addition products 20b and 20c in excellent yields (Scheme 4).
1b, 6a

 

 

 

Scheme 4: Deprotonative 1,2-Addition of 3-Bromopyridine with P4-t-Bu 

 

Deprotonative functionalization of pyridazine 22 resulted in noteworthy 

regioselectivities. The reaction proceeded at the most remote position from the ring nitrogen 

and this system, when reacted with P4-t-Bu base in the presence of benzophenone, 

benzaldehyde and pivalaldehyde displayed unique regioselectivity which is the opposite of 

the direct ortho metallation resulting in addition products 23a, 23b and 23c, respectively 

(Scheme 5).
1b,6a

  

 

 

Scheme 5: Deprotonative 1,2-Addition of Pyridazine with P4-t-Bu 

 

Intrigued by regioselective results of azine 22, when pyrimidine 25 was subjected to 

similar conditions, it resulted in the formation of addition products 26a, 26b and 26c which 

followed the regioselectivity pattern of azines displaying regioselectivity which is the 

opposite of the direct ortho metallation product (Scheme 6).
1b, 6a
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Scheme 6: Deprotonative 1,2-Addition of Pyrimidine with P4-t-Bu 

 

These exciting results led Kondo and coworkers to investigate the deprotonative 

aromatization of substituted benzenes. para-Bromobenzonitrile (28) was treated with P4-t-Bu 

base in the presence of benzophenone and ZnI2 in THF, and the reaction proceeded 

chemoselectively at the 3-position (29a) in 88% yield without ZnI2. Surprisingly, the 

orientation of the reaction is the opposite of the deprotonative metalation using TMP-zincate. 

Reactions with other electrophiles were also examined. Benzaldehyde and pivalaldehyde 

were used as electrophiles in the reaction of 4-bromobenzonitrile 28 in THF, and the 

appropriate 1,2-adducts 29b and 29c were obtained in 86% and 87% yield, respectively 

(Scheme 7).
1b, 6a

 

 

 

Scheme 7: Deprotonative 1,2-Addition of 4-Bromobenzonitrile with P4-t-Bu 

 

The examples detailed above show the utility of P4-t-Bu for many reactions which do 

not work with conventional reactive metallic bases such as LDA and Li-TMP etc. but shows 

remarkable success and specific regeioselectivities with P4-t-Bu. The examples discussed 

below, will describe the utility of P4-t-Bu for some more reaction systems including, but not 

limited to, nucleophilic aromatic substitution, functionalization of arylsilanes, Julia-

Kocienski olefination and halogen-metal exchange.  
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Nucleophilic aromatic substitution (SNAr) reaction is one of the most fundamental 

and widely used transformations in synthetic organic chemistry.
7
 Various nuclephiles, such 

as alcohols, phenols, amines and 1,3-dicarbonyl compounds, have been employed for this 

transformation. Traditionally, highly reactive bases such as sodium hydride, potassium tert-

butoxide etc. have been utilized for the deprotonation of nucleophiles in order to generate the 

reactive anions and the stoichiometric use of bases has been regarded as essential for the 

completion of the substitution reaction. However, catalytic use of strong bases is deemed 

desirable for selectivity, safety and environmental benignity and P4-t-Bu has been shown to 

achieve these goals in the examples detailed next. The direct arylation of alcohols using P4-t-

Bu catalyzed coupling reactions has been a challenge, this was solved by using catalytic P4-t-

Bu for hydride generation from Et3SiH with which sequential deprotonation and SNAr 

reaction can be carried out. Kondo and coworkers started their investigation with arylation 

various alcohols using ortho-fluoronitrobenzene 31. The reaction of ortho-

fluoronitrobenzene 31 with n-hexanol was carried out in the presence of Et3SiH and 10 mol% 

of P4-t-Bu at 100 
o
C for two hours. The arylation reaction proceeded to give ether 32a in 

quantitative yield.
7
 The reaction with primary alcohols such as n-butanol and 2-phenylethyl 

alcohol, secondary alcohols like 2-butanol proceeded under the same reaction conditions to 

give ethers 32b-d in excellent yields (Scheme 8, Table). They next investigated the 

feasibility of Et3SiH/catalytic P4-t-Bu system to effect the SNAr reaction of C-nucleophiles. 

Diethyl methylmalonate was reacted with o-fluoronitrobenzene at 80 
o
C for 1 hour and the 

arylation was found to proceed in almost quantitative yield to give ether 35 (Scheme 8). 

Other alpha-substituted malonates also reacted with o-fluoronitrobenzene to give o-

nitrophenylmalonates which are important precursors for the synthesis of oxindole 

derivatives.
7
 alpha-Substituted cyanoacetate and alpha-substituted malononitrile were also 

shown to be excellent C-nucleophiles (Scheme 8). Even the less reactive ortho-fluoro and 

para-fluorobenzonitriles were succefully reacted with methylmalonate 34 to give the 

corresponding arylmalonates in reasonable yields (Scheme 8). Conventionally, aryl fluorides 

with weak electron withdrawing groups have not been used for SNAr reaction with these C-

nuclephiles and this Et3SiH/ catalytic P4-t-Bu system provides a new and effective SNAr 

reaction protocol.
7
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Scheme 8: SNAr using Et3SiH/P4-t-Bu as a system for nucleophile activation
7
 

 

Another work from Kondo and coworkers describes the P4-t-Bu promoted 

functionalization of aryltrimethylsilanes.
8
 Aryltrimethylsilanes have been used as important 

synthons and various desilylative functionalization have been investigated to date.
8
 They 

have demonstrated the utility of P4-t-Bu for the activation of aryltrimethylsilanes. Initially, 1-

trimethylsilylnaphthalene 36a was chosen as a substrate and its reaction with pivalaldehyde 

in the presence of 20 mol% P4-t-Bu proceeded smoothly to give alcohol 37a in 91% yield 

(Scheme 9, Table: entry 1). Other conventional strong organic bases like DBU, BEMP and 

fluoride donors like CsF were found to be inactive. The reactions with benzaldehyde 

proceeded somewhat slowly at room temperature but at elevated temperature, the product 

37b was obtained in 61% yield. Other aryl aldehydes with electron donating groups were 

also shown to successfully give products at room temperature. Other aryltrimethylsilanes 

such as 2-trimethylsilylnaphthalene 36c, 4-bromophenyltrimethylsilane 36d, 2-

trifluoromethylphenyltrimethylsilane 36e and 4-methoxycarbonylphenyltrimethylsilane 36f 

were also successfully reacted with pivalaldehyde to give corresponding alcohols in 

moderate to excellent yields (Scheme 9, Table: entry c-f). The reactions of 

heteroaryltrimethylsilanes like 2-pyridyltrimethylsilane 36g and 3-pyridyltrimethylsilane 36h 

also proceeded smoothly to give corresponding alcohols 37g and 37h (Scheme 9, Table: 

entry g-h). In summary, they found that arylsilanes can be carbo-desilylated by the use of 
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catalytic P4-t-Bu as a promoter and the selective functionalizations of arylsilanes possessing 

no strong electron-withdrawing group can be acomplished.
8
 

 

 

Scheme 9: P4-t-Bu promoted functionalization of aryltrimethylsilanes.
8
 

 

Another work, reported by Nájera and coworkers use stoichiometric amount of P4-t-

Bu in Julia-Kocienski olefination to synthesize various substituted olefins.
9a-b

 They used 

various alkyl 3,5-bis(trifluoromethyl)phenylsulfones (BTFP sulfones) 38 and generated 

stabilized anions by using stoichiometric amount of various bases like P4-t-Bu, other 

inorganic bases like KOH and metallic bases like LDA and KHMDS and then condensed 

with different carbonyl compounds to give substituted olefins (Scheme 10).
9a,b

 

 

 

Scheme 10: P4-t-Bu mediated Julia-Kocienski Olefination of BTFP sulfones.
9a,b

 

Though they showed successful examples with all the bases, from studies on the 

stability and reactivity of BTFP sulfones in different reactions, they concluded that P4-t-Bu is 



www.manaraa.com

10 
 

 

most appropriate base for this type of coupling. Under P4-t-Bu reaction conditions, BTFP 

sulfones were better substrates than other sulfones in terms of stability and reactivity. 

Other work by Kondo and coworkers shows that the use of catalytic P4-t-Bu 

dramatically improves the performance of halogen-zinc exchange of aryl iodides.
10

 In recent 

years, organiczinc compounds have been widely used in organic synthesis and one of the 

most powerful methods for the preparation of functionalized organozinc derivatives is 

halogen-zinc exchange reaction.
10

 In their initial investigation, they chose ethyl 4-

iodobenzoate 41 as a substrate. They successfully reacted ethyl 4-iodobenzoate and 

diethylzinc in THF in the presence of 30 mol% P4-t-Bu at room temperature. The halogen-

zinc exchange proceeded smoothly and the de-iodinated product was isolated quantitatively 

after hydrolysis. In the absence of P4-t-Bu, the exchange was very slow and only a trace of 

de-iodinated product was detected at elevated temperatures. In order to expand the scope of 

this reaction, some functionalizations of aryl iodides were examined. As an example of 1,2-

addition, aryl zinc prepared from ethyl 4-iodobenzoate 41 and diethylzinc in the presence of 

P4-t-Bu in THF was reacted with benzaldehyde to get benzhydrol derivative 42 in 78% yield. 

As for the 1,4-addition reaction, aryl zinc prepared similarly in THF was reacted with 

chalcone and 1,4-adduct was obtained in 71% yield. Using the same procedure, allylation 

was also carried out and various allyl arenes were prepared from corresponding aryl iodides 

in excellent yields (Scheme 11).
10

 

 

 

Scheme 11: P4-t-Bu promoted halogen-Zn exchange reaction of aryl iodides. 

 

As detailed above, many intriguing papers on P4-t-Bu were published. Phosphazene 

base P4-t-Bu has shown successful results where other bases have failed. Our research group 

became interested in this specific base when we explored the deprotonation of benzylic 

ethers as a way to synthesize benzofurans.
11

 Kraus and coworkers had originally planned to 
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prepare 44a from benzaldehyde 43a by the two-step sequence involving a photochemical 

hydrogen atom abstraction reaction followed by dehydration using POCl3 and pyridine. 

Although this reaction sequence worked well on a millimole scale, the photochemical step 

proved difficult to scale-up. They next tried the base-mediated reaction. In view of the 

absence of an electron-withdrawing group on the benzyl moiety, the deprotonation of the 

benzylic ether 43a using strong bases in anhydrous media was examined. Treatment of 43a 

with LDA in THF from -78 to 25 °C returned recovered starting material. The reaction of 

43a with LiTMP in THF from 0 to 25 °C afforded mostly recovered starting material with 

byproducts that were not derived from proton abstraction at the benzylic ether position. 

Benzaldehyde 43a did not react with sodium hydride or potassium hydride in THF or DMF. 

When benzaldehyde 43a was reacted with 1.1 equivalent of P4-t-Bu in pivalonitrile at 90 
o
C, 

it successfully cyclized into benzofuran 44a in 49% yield. When benzene was used as the 

solvent, the yield was 47% (Scheme 12). 

 

 

Scheme 12: P4-t-Bu promoted cyclization of o-substituted benzaldehyde.
11

 

 

Using this model, the scope of this intramolecular cyclization with a series of 

aldehydes was explored and they were reacted with P4-t-Bu. To explore the effect of 

electronics on the cyclization, o-alkylated aldehydes 43a-d were prepared and subjected to 

reflux conditions in benzene in the presence of P4-t-Bu. In all cases, cyclization worked 

successfully to give corresponding benzofurans 44a-d in moderate yields. When electron 

deficient system 43g was subjected to general conditions, it worked best to give 
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corresponding benzofuran 44g in 78%. In conclusion, reaction of P4-t-Bu with substituted o-

benzyloxybenzaldehydes offered a new convenient and concise pathway to arylbenzofurans. 

 

 

Scheme 13: P4-t-Bu mediated cyclization of substituted benzaldehydes to benzofurans.
11

 

 

Results and Discussion 

In connection with our studies of synthetic potential of hindered phosphazene base 

P4-t-Bu, we turned our attention to indolo[2,1-a]isoquinolines 45 which represent a growing 

class of natural and synthetic compounds with useful biological activity. A sub-class whose 

members contain a quaternary ammonium salt is represented by mangochinine (46a),
12

 

cryptaustoline (46b),
13

 and ortho-methylcryptaustoline (46c)
14

 and is shown in Figure 2.   

 

 

Figure 2 

 

Certain indolo[2,1-a]isoquinolines have been reported to inhibit the growth of human 

mammary carcinoma cells,
15

 to treat multiple sclerosis,
16

 and to exhibit antiviral activity
17

. 

Compound 47 strongly inhibited tubulin polymerization.
18
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Four most versatile methods for the synthesis of indolo[2,1-a]isoquinolines have been 

reported. Orito reported the cyclization of 1-bromobenzyl-5,6-dihydroisoquinolines 48 by the 

nucleophilic addition of the dihydroisoquinoline nitrogen atom to the bromobenzyl moiety.
19

 

This work is depicted in Scheme 14. He constructed several analogs with different patterns of 

oxygenation. Lautens and coworkers reported an innovative palladium-catalyzed tandem 

reaction sequence starting from a N-(2-bromoethyl)indole 49 and an aryl iodide.
20

 

Importantly, this sequence can accommodate both electron-withdrawing and electron-

donating groups on the aromatic ring. Saa and coworkers reported the synthesis of 45 from 

3,4-dihydroisoquinolines 50 and benzyne.
21

 Although this pathway is a direct one, the yields 

were modest. Kametani reported the synthesis of an indolo[2,1-a]isoquinoline via an 

intramolecular benzyne reaction.
22

 Several groups reported intramolecular radical 

cyclizations onto indoles 51 to form the indolo[2,1-a]isoquinoline ring system.
23, 24

 The 

radicals were generated using either trialkyltin hydrides or trialkylgermanium hydrides. This 

pathway is flexible with regard to substitution on either the indole or the bromobenzene ring. 

 

 

Scheme 14 

 

 Our approach to the synthesis of indolo[2,1-a]isoquinolines is depicted in Scheme 15. 

This approach involves the preparation of aldehyde 54 by the coupling of 52 and 53 followed 

by a base-induced cyclization to generate the indolo[2,1-a]isoquinoline system. Since 

tetrahydroisoquinolines are readily available,
25

 and several ortho-fluorobenzaldehydes are 
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commercially available, this approach has the potential to be a very flexible one. This 

synthetic strategy is distinctly different from the four general synthetic routes to indolo[2,1-

a]isoquinolines described above. Recently, De Koning reported the deprotonation and 

cyclization of N-benzyl pyrroles using potassium tert-butoxide to form related heterocyclic 

systems.
26

  

 

Scheme 15: Reterosynthetic analysis 

 

 In order to test the concept, we treated 2-fluorobenzaldehyde 53a with anhydrous 

potassium carbonate and tetrahydroisoquinoline 52a in DMF to generate 54a in 48% yield. 

Cyclization of aldehyde 54a was attempted using lithium diisopropylamide, lithium 

tetramethylpiperidine, sodium hydride, potassium hydride or potassium tert-butoxide and P4-

t-Bu (Scheme 16, table 1). Treatment of 543a with LDA in THF from -78 to 25 °C returned 

recovered starting material (Scheme 16, Table 1 – entry 1). The reaction of 54a with Li-TMP 

in THF from 0 to 25 °C afforded mostly recovered starting material with byproducts that 

were not derived from proton abstraction at the benzylic position (Scheme 16, Table 1 – 

entry 2). Benzaldehyde 54a did not react with sodium hydride, potassium hydride or 

potassium tert-butoxide in THF or DMF even at elevated temperatures (Scheme 16, Table 1 

– entry 3, 4, 5). Only P4-t-Bu (1) generated the desired tetracyclic product 45a (Scheme 16, 

Table 1 – entry 6). When benzaldehyde 54a was reacted with 1.1 equivalent of P4-t-Bu in 

refluxing benzene for two hours, indolo[2,1-a]isoquinoline 45a was produced in 35% 

isolated yield. 
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Scheme 16: Model system 

 

With a successful two-step synthesis of dihydroindolo[2,1-a]isoquinolines, in order to 

explore the steric and electronic effects, we generated a number of related compounds from 

commercially available tetrahydroisoquinolines and ortho-fluorobenzaldehydes. Nucleophilic 

aromatic substitution reaction (SNAr) of substituted tetrahydroisoquinolines (52) with various 

substituted ortho-fluorobenzaldehydes (53) worked in moderate to good yields to give 

substituted aldehydes (54a-j). The results of this effort are shown in Table 2. Since, with 

electron withdrawing groups on tetrahydroisoquinoline ring, generation of benzylic anion 

would not be hard, we decided to take the opposite route and thus used electron rich 

tetrahydroisoquinoline (52d) and explored the resultant effect on cyclization reaction. Similar 

approach was used with substituted ortho-fluorobenzaldehydes and mostly, electron rich 

systems were used. 
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# R1 R2 R3 R4 R5 
% yield of 

54a - j 

% yield of 

45a – 1j 

a H H H H H 48 35 

b H H H H OMe 42 52 

c H H OMe OMe H 48 38 

d OMe OMe H H H 48 25 

e OMe OMe H H OMe 37 32 

f OMe OMe OMe OMe H 40 39 

g H H CF3 H H 60 44 

h OMe OMe CF3 H H 66 35 

i H H H CF3 H 52 42 

j OMe OMe H CF3 H 53 39 

k H H Br H H 56 0 

Table 2: Synthesis of 5,6-dihydroindolo[2,1-a]isoquinolines 

 

Except for one example (54k), which has a bromo substituent, all other compounds 

underwent successful cyclizations irrespective of the position of the electron donating 

methoxy groups (Table 2; Entry b-d). Even the presence of multiple methoxy groups was 

tolerated well by our intramolecular cyclization reaction and resulted in the formation of 

various di, tri or tetra methoxy substituted products (Table 2; Entry c-f). We also studied few 

examples with electronegative trifluoromethyl group as a substituent on benzaldehyde. Since 

trifluoromethyl group has significant electronegativity that is often described as being 

intermediate between the electronegativities of fluorine and chlorine, 
27

 we thought it would 

be interesting to observe its effects on the cyclization. Also, trifluoromethyl group can be 

used to adjust the steric and electronic properties of a lead compound, or to protect a reactive 

methyl group from metabolic oxidation. Moreover, the trifluoromethyl group is often used as 
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a bioisostere to create derivatives by replacing a chloride or methyl group and is present in 

some notable drugs including efavirenz (Sustiva), an HIV reverse transcriptase inhibitor; 

fluoxetine (Prozac), an antidepressant; and celecoxib (Celebrex), a non-steroidal anti-

inflammatory, it would be interesting to see the biological activities of the resultant cyclized 

compounds. All four systems (54g-j) underwent successful cyclization to give indolo[2,1-

a]isoquinolines 45g-j in moderate yields. Though most of the aldehydes (54a-j) readily 

underwent intramolecular cyclization when reacted with 1.1 equivalent of P4-t-Bu in 

refluxing benzene, there was no specific pattern or effect of electronics and stearics which 

could be discerned from the data. 

Compound 45f could be used in a direct synthesis of ortho-methylcryptaustoline 

iodide 46c as shown in Scheme 17.  The reduction of compound 45f using sodium 

cyanoborohydride in acetic acid at ambient temperature afforded the tetrahydro compound 55 

which on treating with methanol containing excess methyl iodide over 48 hours afforded 46c 

in 73% overall yield from 45f.  The NMR data and melting point of our synthetic compound 

were identical to that of the literature
27

 compound. 

 

 

Scheme 17: Synthesis of O-methylcryptaustoline iodide 

 

The compounds 45a-j were evaluated for their ability to modulate immune response 

by our collaborators in immunobiology program at Iowa State University.
28

 The cells 

obtained from influenza virus-infected mice were cultured in vitro with compounds 45a-j and 

influenza virus. Each compound (45a-j) suppressed the production of IL-10. IFNγ is secreted 

by cyotoxic T lymphocytes, and exhibits anti-viral activity, but may also result in 

immunopathology.
19

 Again, every compound (45a-j) inhibited production of IFN.19 

Interleukin-2 (IL-2) is produced primarily by T-helper cells during influenza infection and 

plays an important role in activating T lymphocytes.  Compounds 45a-j reduced production 

of IL-2.
28
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In conclusion, this methodology constitutes a novel and direct route to 

dihydroindolo[2,1-a]isoquinolines.  The route is flexible with respect to functionality and can 

be scaled up to prepare gram quantities of dihydroindolo[2,1-a]isoquinolines. The utility of 

this route is shown in the direct synthesis of ortho-methylcryptaustoline iodide 46c. Also, 

these compounds exhibited significant immunosuppressive activity against IL-2, IL-10 and 

IFN-γ and To the best of our knowledge, we have been the first to report that indolo[2,1-

a]isoquinolines exhibit immunosuppressive activity. 

In order to further explore the synthetic potential of the hindered phosphazene base 

P4-t-Bu,
12 

we diverted our attention towards the synthesis of 2,3-diarylbenzo[b]furans (Figure 

3).  

 

 

Figure 3: General structure of diarylbenzo[b]furan. 

 

2,3-Diarylbenzo[b]furans are a class of natural products that are broadly distributed 

and exhibit diverse biological activity.
29 

Amurensin H (48), isolated from Vitus amurensis, 

shows significant anti-inflammatory activity in mice models.  Compound 48 may have 

therapeutic potential for the treatment of allergic airway inflammation.
2
 It has also been 

reported to treat chronic obstructive pulmonary disease.
30

 It has been synthesized by an 

oxidative coupling reaction according to its biogenetic pathway.
31

 Gnetuhainin B (49), which 

shares the same basic skeleton with Amurensin H and differs only in the position and number 

of hydroxyl groups, was isolated from Gnetum hainanense which grows only in the southern 

part of the People‟s Republic of China, especially in Hainan Province.
32

 Gnetuhainin G (50) 

is a novel furobenzofuran from Gnetum hainanense that is an antioxidant.
33

 alpha-Viniferin, 

structurally related to 48, has been reported to be a potent MRP1 transport inhibitor.
34

 

 



www.manaraa.com

19 
 

 

 

Figure 4 

 

Several synthetic routes to benzofurans such as 47 are known.
35

 The majority of these 

syntheses take place via disconnection A (Figure 2). This includes the reaction of ortho-

halophenols with acetylenes
36

, and the oxidative cyclization
37

 of hydroxy stilbenes. A related 

pathway is the palladium-mediated arylation of benzofurans.
38

 In contrast, disconnection B 

(Figure 5) has only rarely been utilized to prepare diarylbenzofurans. A notable example is a 

photocyclization that takes place via an intramolecular hydrogen atom abstraction of the 

benzylic hydrogen atom followed by radical recombination and dehydration.
39

  

 

 

Figure 5 

 

Our proposed reterosynthetic approach is depicted in Figure 6. We planned to use 2-

hydroxybenzophenone (53) as our starting material, as many of these substituted 2-

hydroxybenzophenones are commercially available or can be prepared easily by Friedel-

Crafts acylation of substituted phenols (52) with various benzoyl chlorides (51). We 

envisioned that using P4-t-Bu, an anion can be generated at the benzylic position in O-

arylated benzophenone (54) which could attack the carbonyl carbon of benzophenone (54) to 

cyclize the system and generate 2,3-diarylbenzo[b]furan (47). 
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Figure 6: Reterosynthetic analysis 

 

We first tested our hypothesis on a model system. Benzyl bromide was reacted with 

2-hydroxybenzophenone (53a) under basic conditions to prepare 2-benzyloxybenzophenone 

(54a) in 83% yield. This substituted benzophenone 54a was then refluxed in benzene in the 

presence of 1.1 equivalents of P4-t-Bu and 2,3-diphenylbenzo[b]furan (47a) was isolate in 

quantitative yield (Scheme 18).  

 

 

Scheme 18: Synthesis of model system 

 

With this promising result in hand, we evaluated an array of benzophenones for the 

effect of electronic factors. Initially, we tested the effect of electron-donating groups on the 

cyclization reaction. Two different ortho-(aryloxy)benzophenones 54b and 54c were 

synthesized by reacting ortho-hydroxybenzophenone with appropriate benzyl bromides under 

basic conditions (Scheme19). These substituted benzophenones had a methoxy on para 

position (54b) and methoxy on both meta and para positions (54c). Both of these systems 

cyclized in good yields when subjected to reflux conditions in the presence of P4-t-Bu to give 

diarylbenzo[b]furan 47b and 47c in 69% and 61% yield respectively (Scheme 19). 
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Scheme 19: Synthesis of 2,3-diarylbenzo[b]furans 

 

Scheme 20 outlines another type of system where the cyclization conditions were 

attempted on benzophenones bearing electron donation methoxy and methylenedioxy groups. 

To synthesize these benzophenones, Friedel-Crafts acylation reaction conditions were 

utilized. Phenols 52a-b were condensed with benzoyl chloride in the presence of lewis acid 

aluminium trichloride in refluxing 1,2-dichloroethane to get ortho-hydroxybenzophenones 

53b-c in decent yields. These substituted benzophenones were O-arylated with benzyl 

bromide and then subjected to cyclization conditions to get diarylbenzo[b]furans 47d-e in 

good yields (Scheme 20). 
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Scheme 20: Synthesis of 2,3-diarylbenzo[b]furans 

 

The success of diaryl systems motivated us to synthesize hetroaryl systems and try 

cyclization conditions on them. The synthesis began with Friedel-Crafts acylation of phenols 

52a-b with 2-furoic acid chloride 51b in previously standardized conditions to give 

dimethoxy 53d and methylenedioxy 53e systems in 64% and 61% yield, respectively. 

Compounds 53d-e were O-arylated under usual condtions and then successfully cyclized in 

the presence of P4-t-Bu to give 2,3-diarylbenzo[b]furans 47f-g in decent yields (Scheme 21). 

These substituted diarylbenzofurans were novel because in addition to usual phenyl system, 

they have a furan as other aryl substitution. 
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Scheme 21: Synthesis of 2,3-diarylbenzo[b]furans 

 

With the success of all the above-mentioned systems, we designed a benzophenone 

system bearing five methoxy groups, three on one phenyl ring and two on the other. The idea 

was to maximize the electronic effects and to make the carbonyl carbon least reactive. The 

synthesis is shown in Scheme 22 and it started off with the Friedel-Crafts acylation of 3,4-

dimethoxyphenol 52a with 3,4,5-trimethoxybenzoyl chloride 51c in 51% yield, followed by 

O-arylation using benzy bromide under basic conditions to give ortho-

(benzyloxy)benzophenone 54h in 68% yield. This system, when refluxed in benzene in the 

presence of P4-t-Bu, successfully cyclized to a pentamethoxy diarylbenzo[b]furan 47h in 

excellent yield (Scheme 22). 
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Scheme 22: Synthesis of 2,3-diarylbenzo[b]furans 

 

At this stage we had eight successful examples of P4-t-Bu mediated cyclization to 

give 2,3-diarylbenzo[b]furans. Even the most electron rich systems like 54c and 54h 

underwent successful cyclization with high efficiency. But all those successful examples had 

only one site at which the anion can be generated. In order to show the flexibility of our 

method, we decided to design systems with more than one reactive site. In order to 

synthesize appropriate benzophenone system, we took the photochemical route which was 

developed and standardized in our laboratory.
40

 In the scheme described below, we reacted 

1,4-benzoquinone 55 with 2-methoxybenzaldehyde 56a and 3,4,5-trimethoxybenzaldehyde 

56b under ultraviolet conditions, in the presence of catalytic amount of benzophenone in 

benzene as solvent. Three days of continuous stirring under these conditions resulted in the 

successful formation of 2,4-dihydroxybenzophenone systems 53g-h in 68% and 65% yields 

respectively. These compounds were then di-O-arylated in the presence of sodium hydride 

and benzyl bromide to get compounds 54i-j in good yields. Subsequent cyclization with 1.1 

equivalence of P4-t-Bu resulted in the formation of only a very small amount of product and 

recovery of majority of the starting material. Componds 54i-j underwent successful 
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cyclization reactions to give diarylbenzo[b]furans 47i-j when excess (2.5 equivalents) of P4-t-

Bu was used (Scheme 23). Moderate yields in both the cases can be attributed to the presence 

of another reactive site.  

 

 

Scheme 23: Synthesis of 2,3-diarylbenzo[b]furans- effect of multiple reaction sites. 

 

Success of the systems discussed above (Scheme 24) encouraged us to try another, 

yet more ambitious example with two sites to generate the anion and two sites to trap. This 

would result in the formation of benzo[1,2-b:5,4-b']difuran ring system (Scheme 24). The 

synthesis started with commercially available 1,3-dimethoxybenzene 57. Excess aluminium 

trichloride was used in Friedel-Crafts acylation to get the diacylation as well as 

demethylation of both the methoxy groups in one pot.
41

 Resorcinol derivative 53i was 

obtained in moderate yield but considering that dual purposes were served, we decided to 

move forward. O-arylation was done under standard basic conditions using sodium hydride 

and benzyl bromide to get the di O-arylated product 54k in 65% yield. This compound 54k 

was then subjected to cyclization reaction using 1.1 equivalents of P4-t-Bu but reaction did 

not work even after prolonged heating. Successful cyclization was achieved with the use of 
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2.5 equivalents of P4-t-Bu resulting in the formation of benzo[1,2-b:5,4-b']difuran 47k in 

61% yield (Scheme 24).  

 

 

Scheme 24: Synthesis of benzo[1,2-b:5,4-b']difuran ring system 

 

Next, we tried few reactions to check the functional group tolerance as well as the 

effect of electron withdrawing substitution on the ring. Results are compiled below in 

Scheme 25. 
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Scheme 25 

 

As shown by the synthesis of substituted 2,3-diphenylnaphthofuran 47m, this method 

is compatible with an ester group. Also, the electron withdrawing effect of the ester did not 

influence the cyclization in a positive way. In fact, the yield of the cyclization reaction for 

compound having an ester in the para position (47m) was actually lower than the 

unsubstituted system (47l, Scheme 25). Chloro substitution is tolerated well during the 

cyclization step as indicated for compound 47n. When O-aryloxybenzophenone 54o 

containing a nitro substitution was subjected to cyclization conditions, it smoothly got 

converted into 2,3-diarylbenzo[b]phenone 47o in 65% yield. The same success could not be 

repeated with a cyano substituted benzophenone 54p as it failed to undergo cyclization under 

P4-t-Bu conditions. 

As the results detailed above illustrate, this cyclization is compatible with a variety of 

functional groups and represents a convenient way to synthesize aryl substituted benzofurans. 

As synthesis of 47k indicates, this chemistry is extendable to the benzo[1,2-b:5,4-b']difuran 

ring system. Interestingly, this cyclization proceeds in good yield despite the presence of two 

different benzyl groups in the benzophenone (47i-j).  
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Scheme 26: Possible mechanistic pathway for the formation of 2,3-diarylbenzo[b]furans 

 

The possible mechanism for these reactions is depicted in Scheme 26 which is based 

on the assumption that P4-t-Bu successfully deprotonated the benzylic position which bears 

the most acidic hydrogen. The anion thus generated reacts with the carbonyl carbon giving 

rise to the intermediate which undergoes dehydration at elevated temperature to give 2,3-

diarylbenzo[b]furan. 

 

 

Scheme 27: Reterosynthetic analysis of amurensin H 

 

This methodology can be used in a direct total synthesis of amurensin H (48). As 

shown in Scheme 27, our reterosynthetic consideration of 48 was focused on the efficient 

synthesis of substituted benzophenone 69 which subsequently can be cyclized by using our 

P4-t-Bu mediated cyclization followed by exhaustive demethylation to give the natural 
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product 48. We envisioned that benzophenone 69 can be prepared from stilbene derivative 

65. We based the synthesis of stilbene 65 on the work done by Snyder and coworkers.
42

  

 

 

Scheme 28: Synthesis of the substituted stilbene 65 

 

The synthesis of substituted stilbene 65 is outlined in Scheme 28. Commercially 

available 3,5-dimethoxybenzaldehyde 59 was reduced using lithium aluminum hydride 

conditions to give dimethoxybenzyl alcohol 60 in 82% yield. Benzyl alcohol 60 was 

converted to dimethoxybenzyl bromide 61 using phosphorous tribromide and catalytic 

pyridine in dry ether in 84% yield. Ring halogenation of 61 was carried out by N-

bromosuccinimide at 0 
o
C in 92% yield to give corresponding bromobenzyl bromide 62 in 

92% yield. Benzyl bromide 62 was subjected to Michaelis-Arbuzov reaction conditions using 

triethyl phosphate to form phosphonate 63 in 92% yield. This phosphonate 63 underwent 

successful Horner-Wadsworth-Emmons reaction with para-methoxybenzaldehyde 64 giving 

stilbene 65 in 74% yield.
42
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Scheme 29: Total synthesis of amurensin H 

 

Scheme 29 shows the completion of the total synthesis from stilbene 65. Starting 

from stilbene 65, metal-halogen exchange followed by reaction with 3,5-

dimethoxybenzaldehyde 59 and oxidation with activated manganese dioxide affords 

benzophenone 67 in 77% yield from 65. This benzophenone 67 was selectively demethylated 

in 88% yield to give 68 using BBr3 solution (1.0M in CH2Cl2) at -50 
o
C. The resulting phenol 

68 is converted into benzyl ether 69 in 86% yield. Cyclization of 69 using P4-t-Bu in dry 

benzene at 170 
o
C (sealed tube conditions) provided 70 in 42% yield. The higher temperature 

needed to effect the cyclization is likely a result of steric factors. Finally, the total synthesis 

of amurensin H 48 was achieved by exhaustive demethylation of benzofuran 70 using BBr3 

solution (1.0M in CH2Cl2) at room temperature in 67% yield. The analytical data for 48 

matched with the previously reported data.
31, 43

 In conclusion, we successfully completed the 

synthesis of amurensin H using the methodology developed for the synthesis of 2,3-

diarylbenzo[b]furans. The synthesis was completed in eleven steps starting from 

commercially available materials in 7% overall yield. 
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Figure 7: Naturally occurring pyrrolo[2,3-d]pyrimidine derivatives. 

 

As a final part of our studies regarding the use of P4-t-Bu, we focused on the use of 

cyclization conditions for the synthesis of substituted pyrrolo[2,3-d] pyrimidine derivatives. 

For several decades, interest in pyrrole derivatives as antimicrobial agents has led to the 

preparation and antimicrobial evaluation of hundreds of such molecules.
44

 Pyrrole derivatives 

have antimicrobial activity against Staphylococcus aureus, Bacillus subtilis and Escherichia 

coli and an interesting antifungal activity against Candida albicans, as shown by Petruso et 

al.
45

 and Raimondi et al.
46

 Tubercidin, toyocamycin and sangivamycin are naturally 

occurring pyrrolo[2,3-d]pyrimidine antibiotics having significant activity against 

Mycobacterium tuberculosis, Candida albicans and Streptococcus neoformans, which was 

shown in many reports (Figure 7).
47-49

 2,4-Diamino-5-methyl-6-substituted-pyrrolo[2,3-

d]pyrimidines are potent and selective dihydrofolate reductase (DHFR) inhibitors against 

Pneumocystis carinii, Toxoplasma gondii and Mycobacterium avium, as reported by Gangjee 

et al.
50

 The aim of this study was to synthesize new pyrrolo[2,3-d]pyrimidine derivatives, 

hoping that they could be of promising chemical and biological interest. 

 

Scheme 30: Reterosynthetic analysis 
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Our approach to the targeted pyrrolo[2,3-d]pyrimidine is shown in Scheme 30. We 

envisioned 3-carboxy-4,6-dichloropyrimidine 76 as a key component to our synthetic 

methodology. The reason for that is both chloro groups on pyrimidine 76 can be individually 

substituted with various amines 78 to prepare substituted carboxypyrimidine 79. We planned 

to try our P4-t-Bu mediated cyclization reaction on this intermediate 79 to get substituted 

pyrrolo[2,3-d]pyrimidines 74. 

 

 

Scheme 31: Synthesis 

 

The synthesis started by subjecting commercially available 4,6-dihydroxypyrimidine 

75 to Vilsmeier-Haack reaction conditions to get 3-carboxy-4,6-dichloropyrimidine 76 in 

76% yield.
51

 This substituted pyrimidine 76 was then condensed with diethylamine under 

basic conditions to get N‟N‟-diethyl substituted pyridine 77 in 72% yield. This time, 

pyrimidine 77 was condensed with three different amines 78a-c to get pyridine 79a-c in 

excellent yields (Scheme 31).  
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Scheme 32: Synthesis of pyrrolo[2,3-d]pyrimidines 

 

Compound 79a-c were then subjected to previously developed P4-t-Bu mediated 

cyclization reaction conditions to obtain substituted pyrrolo[2,3-d]pyrimidines 74a-c in good 

yields (Scheme 32). It was observed that compound 79b-c needed 2.2 equivalents of P4-t-Bu 

to complete the cyclization because of the presence of two sites where anion can be 

generated.  

In conclusion, we developed a very efficient and novel method to generate benzylic 

anions in electron rich systems and used this strategy to synthesize various heterocylic 

aromatic compounds. We showed the utility of this method by synthesizing two natural 

products. 

 

Experimental 

 

General procedure for the preparation of 54a-j: 

To a solution of 1,2,3,4-tetrahydroisoquinoline (0.56 g, 4.2 mmol) in dry DMF (6 mL), dry 

K2CO3 (0.58 g, 4.2 mmol) was added followed by solution of o-fluorobenzaldehyde (0.50 g, 

4.0 mmol) in DMF at RT. Reaction mixture was heated to reflux for 20 h. After the 

completion of reaction, reaction mixture was cooled to RT, diluted with water and extracted 
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with ethyl acetate (three times). Organic layer was then washed with water, brine and dried 

over MgSO4. Excess solvent was evaporated in vacuo to obtain crude product. Crude product 

was subjected to column purification using 5% ethyl acetate: petroleum ether to obtain pure 

product (48% yield). 

 

Spectroscopic Data for: 

 

2-(3,4-Dihydroisoquinolin-2(1H)-yl)benzaldehyde (54a)  

1
H-NMR (400MHz, CDCl3) δ 3.07 (t, J = 5.6 Hz, 2H), 3.46 (t, J = 5.6 Hz, 2H), 4.34 (s, 2H), 

7.10 – 7.13 (m, 2H), 7.19 – 7.22 (m, 4H), 7.54 (dt, J = 7.8 Hz, J = 2 Hz, 1H), 7.86 (dd, J = 

7.6 Hz, J = 1.6 Hz, 1H), 10.34 (s, 1H); 
13

C-NMR (100MHz, CDCl3) δ: 29.1, 53.6, 54.8, 

119.0, 122.3, 126.1, 126.4, 126.6, 128.6, 129.0, 130.0, 134.1, 134.2, 134.9, 155.2, 191.3; MS 

(m/z): 237, 149, 125, 123, 95, 83, 69, 55; HRMS: calcd for C16H15NO: 237.1154, found 

237.1156. 

 

 

2-(3,4-Dihydroisoquinolin-2(1H)-yl)-3-methoxybenzaldehyde (54b)  

1
H-NMR (400MHz, CDCl3) δ 2.98 (s, 2H), 3.49 (s, 2H), 3.86 (s, 3H), 4.35 (s, 2H),   7.00 – 

7.02 (m, 1H), 7.14 – 7.19 (m, 4H), 7.26 (dt, J = 7.6 Hz, J = 0.8 Hz, 1H),  7.46 (dd, J = 7.6 

Hz, J = 1.6 Hz, 1H), 10.58 (s, 1H); 
13

C-NMR (100MHz, CDCl3) δ: 30.3, 49.4, 54.0, 55.7, 

117.5, 119.6, 125.8, 126.1, 126.3, 126.5, 129.3, 134.8, 134.9, 135.4, 143.8, 158.8, 193.7; MS 

(m/z): 267, 179, 93, 84, 77, 57, 49, 44, 40; HRMS: calcd for C17H17NO2: 267.1259, found 

267.1263. 
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2-(3,4-Dihydroisoquinolin-2(1H)-yl)-4,5-dimethoxybenzaldehyde (54c)  

1
H-NMR (400MHz, CDCl3) δ 3.05 (t, J = 5.6 Hz, 2H), 3.41 (t, J = 6.0 Hz, 2H), 3.90 (s, 3H), 

3.94 (s, 3H), 4.27 (s, 2H), 6.70 (s, 1H), 7.07 – 7.09 (m, 1H), 7.17 – 7.20 (m, 3H), 7.37 (s, 

1H), 10.29 (s, 1H); 
13

C-NMR (100MHz, CDCl3) δ 29.4, 53.6, 54.1, 55.9, 56.2, 56.3, 102.8, 

110.0, 122.4, 126.2, 126.4, 126.7, 129.2, 134.3, 145.5, 152.3, 155.0, 190.0; MS (m/z): 297, 

282, 264; HRMS calcd for C18H19NO3: 297.1365 found 297.1369. 

 

 

2-(6,7-Dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)benzaldehyde (54d) 

1
H-NMR (400MHz, CDCl3) δ 2.96, (t, J = 5.6 Hz, 2H), 3.43 (t, J = 6.0 Hz, 2H), 3.86 (s, 3H), 

3.87 (s, 3H), 4.26 (s, 2H), 6.59 (s, 1H), 6.67 (s, 1H), 7.11 (t, J = 7.2 Hz, 1H), 7.17 (d, J = 7.6 

Hz, 1H), 7.52 (dt, J = 7.6 Hz, J = 1.6 Hz, 1H), 7.83 (dd, J = 7.6 Hz, J = 1.6 Hz, 1H), 10.32 (s, 

1H); 
13

C-NMR (100MHz, CDCl3) δ: 28.6, 53.7, 54.5, 56.0, 56.1, 109.1, 111.6, 119.1, 122.3, 

125.9, 126.2, 128.5, 130.0, 134.9, 147.6, 147.8, 155.2, 191.4; MS (m/z): 297, 296, 282, 177, 

149; HRMS calcd for C18H19NO3: 297.1365, found 297.1369. 

 

 

2-(6,7-Dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-3-methoxybenzaldehyde (54e) 

1
H-NMR (400MHz, CDCl3) δ 2.86 (s, 2H), 3.43 (s, 2H), 3.81 (s, 3H), 3.83 (s, 3H), 3.85 (s, 

3H), 4.45 (s, 2H), 6.47 (s, 1H), 6.65 (s, 1H), 7.12 (d, J = 8.4 Hz, 1H), 7.22 (t,  J =  6.8 Hz, 

1H), 7.42 (d, J = 7.2 Hz, 1H), 10.54 (s, 1H); 
13

C-NMR (100MHz, CDCl3) δ 29.9, 49.5, 53.7, 

55.7, 56.1, 56.1, 109.2, 112.0, 117.5, 120.0, 126.4, 126.7, 127.2, 134.9, 144.0, 147.4, 147.5, 
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158.8, 193.8; MS (m/z): 327, 326, 310, 270, 177, 164, 149, 77; HRMS calcd for C19H21NO4: 

327.1471, found 327.1474. 

 

 

2-(6,7-Dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-4,5-dimethoxybenzaldehyde (54f)  

1
H-NMR (400MHz, CDCl3) δ 2.95 (t, J = 5.6 Hz, 2H), 3.38 (t, J = 6.0 Hz, 2H), 3.85 (s, 3H), 

3.87 (s, 3H), 3.90 (s, 3H), 3.93 (s, 3H), 4.20 (s, 2H), 6.57 (s, 1H), 6.66 (s, 1H), 6.68 (s, 1H), 

7.36 (s, 1H), 10.28 (s, 1H); 
13

C-NMR (100MHz, CDCl3) δ: 28.8, 54.1, 55.5, 56.1, 56.1, 56.2, 

56.2, 102.7, 109.1, 109.9, 111.7, 122.2, 126.0, 126.2, 145.4, 147.6, 147.9, 152.3, 154.9, 

190.0; MS (m/z): 357, 342, 296, 192, 164, 149; HRMS calcd for C20H23NO5 357.1576, found 

357.1582. 

 

 

2-(3,4-Dihydroisoquinolin-2(1H)-yl)-5-(trifluoromethyl)benzaldehyde (54g)  

1
H-NMR (400MHz, CDCl3) δ 3.09 (t, J = 5.6 Hz, 2H), 3.57 (t, J = 6.0 Hz, 2H), 4.43 (s, 2H), 

7.12-7.14 (m, 1H), 7.22 – 7.25 (m, 4H), 7.71 (d, J = 8.0 Hz, 1H), 8.08 (s, 1H), 10.23 (s, 1H); 

13
C-NMR (100MHz, CDCl3): δ 28.9, 53.2, 54.0, 118.6, 123.1 (q, 

2
J = 33.2 Hz), 124.1 (q, 

1
J = 

269.8 Hz), 126.4, 126.9, 128.3, 128.4, 129.0, 131.1, 131.2, 133.3, 134.1, 156.5, 189.5; MS 

(m/z): 306, 305, 304, 286; HRMS calcd for C17H14F3NO: 305.1027, found 305.1033. 

 

 

2-(6,7-Dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-5-(trifluoromethyl)benzaldehyde 

(54h): 
1
H-NMR (400MHz, CDCl3) δ 2.99 (t, J = 5.6 Hz, 2H), 3.55 (t, J = 6.0 Hz, 2H), 3.88 
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(s, 3H), 3.89 (s, 3H), 4.36 (s, 2H), 6.61 (s, 1H), 6.68 (s, 1H), 7.22 (d, J = 8.8 Hz, 1H), 7.71 

(d, J = 8.8 Hz, 1H), 8.07 (s, 1H), 10.22 (s, 1H); 
13

C-NMR (100MHz, CDCl3): δ 28.1, 53.1, 

53.4, 55.6, 55.7, 108.9, 111.3, 118.4, 122.7 (q, 
2
J = 33.4 Hz), 123.9 (q, 

1
J = 269.2 Hz), 124.9, 

125.8, 126.6, 127.9, 130.9, 147.5, 147.8, 156.4, 189.3; MS (m/z): 365, 364, 350, 332, 252, 

140, 96, 85, 83, 48; HRMS calcd for C19H18F3NO: 365.1239, found 365.1246. 

 

 

2-(3,4-dihydroisoquinolin-2(1H)-yl)-4-(trifluoromethyl)benzaldehyde (54i)  

1
H-NMR (400MHz, CDCl3) δ 3.13 (t, J = 8.0 Hz, 2H), 3.51 (t, J = 8.0 Hz, 2H), 4.38 (s, 2H), 

7.08-7.18 (m, 2H), 7.20 – 7.28 (m, 2H), 7.36 (d, J = 8.0 Hz, 1H), 7.45 (s, 1H), 7.95 (d, J = 

8.0 Hz, 1H), 10.33 (s, 1H); 
13

C-NMR (100MHz, CDCl3): δ 29.4, 53.7, 54.7, 115.9, 118.6, 

123.8 (q, 
1
J = 271 Hz), 126.5, 126.7, 127.2, 129.2, 130.6, 131.0, 133.6, 134.1, 136.1 (q, 

2
J = 

32 Hz),  155.1, 190.4; MS (m/z): 307, 306, 305, 304, 286, 218, 164; HRMS calcd for 

C17H14F3NO: 305.1027, found 305.1036. 

 

 

2-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-4-(trifluoromethyl)benzaldehyde 

(54j): 
1
H-NMR (400MHz, CDCl3) δ 3.01 (t, J = 8.0 Hz, 2H), 3.47 (t, J = 8.0 Hz, 2H), 3.87 (s, 

3H), 3.88 (s, 3H), 4.30 (s, 2H), 6.61 (s, 1H), 6.68 (s, 1H), 7.33 (d, J = 8.8 Hz, 1H), 7.40 (s, 

1H), 7.92 (d, J = 8.0 Hz, 1H), 10.29 (s, 1H); 
13

C-NMR (100MHz, CDCl3): δ 28.9, 54.0, 54.3, 

56.2, 56.3, 109.2, 111.7, 115.8, 118.5, 123.8 (q, 
1
J = 272 Hz), 125.3, 126.0, 130.5, 130.9, 

136.0 (q, 
2
J = 32 Hz), 147.9, 148.2, 155.1, 190.4; MS (m/z): 365, 362, 333, 192, 177, 163, 

145, 121, 91, 77, 49, 48; HRMS calcd for C19H18F3NO: 365.1239, found 365.1246. 

 

Procedure for the preparation of 45a-j 
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To a solution of aldehyde (0.10 g, 0.42 mmol) in freshly distilled, dry benzene (5 mL), P4-t-

Bu solution (0.46 mL, 0.46 mmol) was added at room temperature and reaction mixture was 

heated to reflux with monitoring (2 h). After the completion of reaction, benzene was 

partially evaporated and reaction mixture was purified by column purification using 3% ethyl 

acetate: petroleum ether to obtain pure product (35% yield). 

 

Spectroscopic Data for: 

 

5,6-Dihydroindolo[2,1-a]isoquinoline (45a)  

1
H-NMR (400MHz, CDCl3) δ  3.21 (t, J = 6.8 Hz, 2H), 4.27 (t, J = 6.4 Hz, 2H), 6.89 (s, 1H), 

7.12 (t, J = 7.2 Hz, 1H), 7.20 – 7.36 (m, 5H), 7.65 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 8.0 Hz, 

1H); 
13

C-NMR (100MHz, CDCl3) δ: 29.4, 40.3, 96.6, 109.1, 115.5, 120.0, 120.9, 121.8, 

124.5, 127.4, 128.6, 128.5, 128.9, 132.3, 135.8, 143.7; MS (m/z): 219, 109, 108; HRMS 

calcd for C16H13N: 219.1048, found 219.1052. 

 

 

8-Methoxy-5,6-dihydroindolo[2,1-a]isoquinoline (45b)  

1
H-NMR (400MHz, CDCl3) δ 3.12 (t, J = 6.4 Hz, 2H), 3.93 (s, 3H), 4.70 (t, J = 6.4 Hz, 2H), 

6.61 (d, J = 8.0 Hz, 1H), 6.83 (s, 1H), 6.98 (t, J = 8.0 Hz, 1H), 7.14 – 7.25 (m, 3H), 7.27 (t, J 

= 7.8 Hz, 1H), 7.72 (d, J = 7.6 Hz, 1H); 
13

C-NMR (100MHz, CDCl3) δ: 29.9, 43.3, 55.5, 

97.3, 102.9, 113.8, 120.2, 124.4, 126.6, 127.2, 127.4, 128.2, 129.2, 130.7, 132.7, 136.1, 

147.7; MS (m/z): 249, 248, 233, 232, 86, 84, 82, 50, 48; HRMS calcd for C17H15NO: 

249.1154, found 249.1156. 
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9,10-Dimethoxy-5,6-dihydroindolo[2,1-a]isoquinoline (45c)  

1
H-NMR (400MHz, CDCl3) δ 3.19 (t, J = 6.8 Hz, 2H), 3.94 (s, 3H), 3.97 (s, 3H), 4.20 (t, J = 

6.4 Hz, 2H), 6.76 (s, 1H), 6.82 (s, 1H), 7.09 (s, 1H), 7.18 (dt, J = 7.2 Hz, J = 1.2 Hz, 1H), 

7.30 – 7.23 (m, 2H), 7.69 (d, J = 7.6 Hz, 1H); 
13

C-NMR (100MHz, CDCl3) δ 29.4, 40.5, 

56.4, 56.5, 92.6, 96.3, 102.5, 121.6, 123.9, 126.9, 127.4, 128.4, 129.5, 131.4, 131.5, 134.5, 

145.4, 147.2; MS (m/z): 279, 264, 236; HRMS calcd for C18H17NO2: 279.1259, found 

279.1264. 

 

 

2,3-Dimethoxy-5,6-dihydroindolo[2,1-a]isoquinoline (45d) 

1
H-NMR (400MHz, CDCl3) δ 3.14 (t, J = 6.8 Hz, 2H), 3.93 (s, 3H), 3.97 (s, 3H), 4.24 (t, J = 

6.8 Hz, 2H), 6.76 (s, 1H), 6.77 (s, 1H), 7.09 (t, J = 7.2 Hz, 1H), 7.19 (t, J = 7.2 Hz, 1H), 7.25 

(d, J = 6.4 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H); 
13

C-NMR (100MHz, 

CDCl3) δ 29.0, 40.4, 56.2, 56.3, 95.3, 107.5, 109.0, 111.4, 120.0, 120.6, 121.5, 121.8, 125.1, 

129.1, 136.0, 136.8, 148.5, 148.9; MS (m/z): 279, 264, 236; HRMS calcd for C18H17NO2: 

279.1259, found 279.1262;  

 

 

2,3,8-Trimethoxy-5,6-dihydroindolo[2,1-a]isoquinoline (45e)  

1
H-NMR (400MHz, CDCl3) δ 3.08 (t, J = 6.8 Hz, 2H), 3.92 (s, 3H), 3.95 (s, 3H), 3.96 (s, 

3H), 4.69 (t, J = 6.4 Hz, 2H), 6.61 (d, J = 8.0 Hz, 1H), 6.73 (s, 1H), 6.75 (s, 1H), 6.98 (t, J  = 

8.0 Hz, 1H), 7.21 (d, J = 8.8 Hz, 2H); 
13

C-NMR (100MHz, CDCl3) δ 29.5, 43.4, 55.5, 56.2, 

56.3, 96.0, 102.7, 107.4, 111.2, 113.5, 120.1, 121.8, 125.5, 126.4, 130.9, 136.4, 147.5, 148.4, 
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148.8; MS (m/z): 310, 309, 294, 266; HRMS calcd for C19H19NO3: 309.1365, found 

309.1371. 

 

 

2,3,9,10-Tetramethoxy-5,6-dihydroindolo[2,1-a]isoquinoline (45f) 

1
H-NMR (400MHz, CDCl3) δ 3.12 (t, J = 6.4 Hz, 2H), 3.92 (s, 3H), 3.94 (s, 3H), 3.96 (s, 

6H), 4.17 (t, J  =  6.4 Hz, 2H), 6.64 (s, 1H), 6.75 (s, 1H), 6.81 (s, 1H), 7.07 (s, 1H), 7.17 (s, 

1H); 
13

C-NMR (100MHz, CDCl3) δ 29.0, 40.7, 56.2, 56.3, 56.5, 56.6, 92.7, 95.0, 102.5, 

107.0, 111.5, 121.8, 122.2, 124.2, 131.33, 134.8, 145.3, 146.9, 148.4, 148.5; MS (m/z): 357, 

339, 324, 293, 280, 149; HRMS calcd for C20H21NO4: 339.1471, found 339.1476. 

 

 

10-(Trifluoromethyl)-5,6-dihydroindolo[2,1-a]isoquinoline (45g) 

1
H-NMR (400MHz, CDCl3) δ 3.16 (t, J = 6.4 Hz, 2H), 4.22 (t, J = 6.4 Hz, 2H), 6.89 (s, 1H), 

7.24 – 7.40 (m, 5H), 7.73 (d, J = 7.6 Hz, 1H), 7.88 (s, 1H); 
13

C-NMR (100MHz, CDCl3) δ 

29.2, 40.6, 97.4, 97.4, 109.3, 118.5, 118.6, 122.4 (q, 
2
J = 32 Hz), 124.8, 125.6 (q, 

1
J = 270 

Hz), 127.6, 128.3, 128.5, 128.6, 132.4, 137.5, 138.0; MS (m/z): 287, 217; HRMS calcd for 

C17H12F3N: 287.0922 found 287.0929. 

 

 

2,3-Dimethoxy-10-(trifluoromethyl)-5,6-dihydroindolo[2,1-a]isoquinoline (45h) 

1
H-NMR (400MHz, CDCl3) δ 3.15 (t, J = 6.4 Hz, 2H), 3.93 (s, 3H), 3.98 (s, 3H), 4.26 (t, J = 

6.4 Hz, 2H), 6.78 (s, 1H), 6.81 (s, 1H), 7.23 (s, 1H), 7.34 – 7.41 (m, 2H), 7.88 (s, 1H); 
13

C-
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NMR (100MHz, CDCl3) δ 28.8, 40.7, 56.3, 56.4, 96.1, 107.7, 109.1, 111.5, 118.1, 118.2, 

121.1, 122.3 (q, 
2
J = 31 Hz), 125.3, 125.6 (q, 

1
J = 269 Hz), 128.4, 137.8, 138.0, 148.7, 149.5; 

MS (m/z): 347, 287, 217, 84; HRMS calcd for C19H16F3NO2: 347.1133, found 347.1141. 

 

 

9-(Trifluoromethyl)-5,6-dihydroindolo[2,1-a]isoquinoline (45i)  

1
H-NMR (400MHz, CDCl3) δ 3.23 (t, J = 6.4 Hz, 2H), 4.31 (t, J = 6.4 Hz, 2H), 6.91 (s, 1H), 

7.22 – 7.40 (m, 4H), 7.62 (s, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H); 
13

C-

NMR (100MHz, CDCl3) δ 29.2, 40.5, 96.8, 106.7, 116.7, 121.1, 123.6 (q, 
2
J = 32 Hz), 124.9, 

125.5 (q, 
1
J = 269 Hz), 127.6, 128.4, 128.5, 128.6, 131.3, 132.6, 135.7, 138.4; MS (m/z): 287, 

282, 217, 216; HRMS calcd for C17H12F3N: 287.0922 found 287.0929. 

 

 

2,3-Dimethoxy-9-(trifluoromethyl)-5,6-dihydroindolo[2,1-a]isoquinoline (45j) 

1
H-NMR (400MHz, CDCl3) δ 3.16 (t, J = 8.0 Hz, 2H), 3.94 (s, 3H), 3.97 (s, 3H), 4.27 (t, J = 

8.0 Hz, 2H), 6.78 – 6.83 (m, 2H), 7.24 (s, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.59 (s, 1H), 7.66 (d, 

J = 8.0 Hz, 1H); 
13

C-NMR (100MHz, CDCl3) δ 28.7, 40.6, 56.2, 56.3, 95.4, 106.4, 107.7, 

111.4, 116.6, 120.6, 121.0, 123.2 (q, 
2
J = 32 Hz), 125.5, 125.6 (q, 

1
J = 270 Hz), 131.4, 135.7, 

138.7, 148.6, 149.5; MS (m/z): 347, 332, 304, 288, 273; HRMS calcd for C19H16F3NO2: 

347.1133, found 347.1141. 

 

Representative procedure for the preparation of 2,3-diarylbenzofuran 

To a solution of 2-benzyloxybenzophenone (0.20 g, 0.69 mmol) in freshly distilled 

dry benzene (10 mL), P4-t-Bu solution (0.77 mL, 0.76 mmol, 1.0 M solution in hexane) was 

added at room temperature and reaction mixture was heated to reflux with monitoring (3 h). 

After the completion of reaction, benzene was partially evaporated and reaction mixture was 
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purified by column purification using 10% ethyl acetate: petroleum ether to obtain pure 

product (100% yield). 

 

 

2,3-Diphenylbenzo[b]furan (47a) 

Mp 123-124.5 
o
C; 

1
H-NMR (400 MHz) δ 7.23 (t, J = 7.3 Hz, 1H), 7.28-7.35 (m, 4H), 7.38- 

7.52 (m, 6H), 7.55 (d, J = 8.3 Hz, 1H), 7.65-7.67 (m, 2H); 
13

C-NMR (100 MHz) δ 111.1, 

117.5, 120.0, 122.9, 124.7, 127.0, 127.6, 128.3, 128.4, 129.0, 129.8, 130.2, 130.7, 132.8, 

150.5, 154.0; MS (m/z): 271, 199, 183, 121; HRMS calcd for C20H14O: 270.1044, found 

270.11045. 

 

2-(3,4-dimethoxyphenyl)-3-phenylbenzofuran (47c) 

1
H-NMR (400 MHz) δ 7.43 – 7.59 (m, 6H), 7.33 – 7.42 (m, 1H), 7.24 – 7.33 (m, 2H), 7.24 (t, 

J = 8.0 Hz, 1H), 7.16 (s, 1H), 6.83 (d, J = 8.0 Hz, 1H), 3.89 (s, 3H), 3.69 (s, 3H); 
13

C-NMR 

(100 MHz) δ 154.0, 150.8, 149.5, 148.9, 133.4, 130.7, 130.2, 129.2, 127.8, 124.6, 123.7, 

123.1, 120.1, 120.0, 116.5, 111.3, 111.2, 110.3, 56.1, 55.8; MS (m/z): 331, 213; HRMS calcd 

for C22H18O3: 330.1256, found 330.1257. 

 

 

5,6-Dimethoxy-2,3-diphenylbenzofuran (47d) 
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1
H-NMR (300 MHz) δ 7.56 – 7.63 (m, 2H), 7.36 – 7.54 (m, 5H), 7.20 – 7.34 (m, 3H), 7.13 

(s, 1H), 6.89 (s, 1H), 3.97 (s, 3H), 3.88 (s, 3H); MS (m/z): 331; HRMS calcd for C22H18O3: 

330.1256, found 330.1262. 

 

 

6,7-Diphenyl-[1,3]dioxolo[4,5-f]benzofuran (47e) 

1
H-NMR (300 MHz) δ 7.56 – 7.63 (m, 2H), 7.36 – 7.51 (m, 5H), 7.23 – 7.34 (m, 3H), 7.05 

(s, 1H), 6.85 (s, 1H), 5.99 (s, 2H); MS (m/z): 315, 247, 163; HRMS calcd for C21H14O3: 

314.0943, found 314.0934. 

 

 

3-(Furan-2-yl)-5,6-dimethoxy-2-phenylbenzofuran (47f) 

1
H-NMR (400 MHz) δ 7.70 – 7.81 (m, 2H), 7.55 – 7.60 (m, 1H), 7.30 – 7.46 (m, 3H), 7.21 

(s, 1H), 7.08 (s, 1H), 6.60 (dd, 
1
J = 3.3 Hz, 

2
J = 0.6 Hz, 1H), 6.55 (dd, 

1
J = 3.3 Hz, 

2
J = 1.8 

Hz, 1H), 3.96 (s, 3H), 3.95 (s, 3H); 
13

C-NMR (100 MHz) δ 151.1, 149.0, 148.7, 147.4, 147.1, 

142.2, 142.1, 131.1, 128.7, 127.3, 120.6, 111.5, 108.6, 108.4, 102.3, 102.2, 95.3, 95.2, 56.7, 

56.5; MS (m/z): 321; HRMS caclcd for C20H16O4: 320.1049, found 320.1046. 

 

 

7-(Furan-2-yl)-6-phenyl-[1,3]dioxolo[4,5-f]benzofuran (47g) 

1
H-NMR (400 MHz) δ 7.74 (d, J = 8.0 Hz, 2H), 7.51 – 7.56 (m, 1H), 7.31 – 7.44 (m, 3H), 

7.17 (s, 1H), 7.02 (s, 1H), 6.57 (d, J = 3.2 Hz, 1H), 6.52 (dd, 
1
J = 3.2 Hz, 

2
J = 2.0 Hz, 1H), 
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6.01 (s, 2H); MS (m/z): 641, 391, 305, 239, 149; HRMS calcd for C19H12O4: 304.0736, found 

304.0735. 

 

 

5,6-Dimethoxy-2-phenyl-3-(3,4,5-trimethoxyphenyl)benzofuran (47h) 

1
H-NMR (300 MHz) δ 7.64 (dd, 

1
J = 9.2 Hz, 

2
J = 2.0 Hz), 7.21 – 7.35 (m, 3H), 7.12 (s, 1H), 

6.92 (s, 1H), 6.70 (s, 2H), 3.85 (s, 6H), 3.89 (s, 3H), 3.80 (s, 6H); MS (m/z): 421; HRMS 

calcd for C25H24O6: 420.1573, found 420.1568. 

 

 

6-Benzyl-3-(2-methoxyphenyl)-2-phenylbenzofuran (47i) 

1
H-NMR (300 MHz) δ 7.56 – 7.63 (m, 2H), 7.20 – 7.45 (m, 10H), 7.18 (s, 1H), 6.94 – 7.07 

(m, 3H), 6.86 (d, J = 2.4 Hz, 1H), 5.00 (s, 2H), 3.58 (s, 3H); 
13

C-NMR (100 MHz) δ 157.6, 

155.3, 152.0, 149.2, 137.5, 132.0, 131.4, 131.3, 129.6, 128.7, 128.4, 128.2, 128.0, 127.7, 

126.5, 121.8, 121.2, 114.2, 114.1, 111.7, 111.6, 104.5, 70.9, 55.5; MS (m/z): 407; HRMS 

calcd for C28H22O3: 406.1515, found 406.1520. 

 

 

6-Benzyl-2-phenyl-3-(3,4,5-trimethoxyphenyl)benzofuran (47j) 
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1
H-NMR (400 MHz) δ 7.71 (d, J = 8.0 Hz, 2H), 7.43 – 7.50 (m, 3H), 7.29 – 7.43 (m, 6H), 

7.06 (s, 2H), 6.69 (s, 2H), 5.09 (s, 2H), 3.98 (s, 3H), 3.79 (s, 6H); 
13

C-NMR (100 MHz) δ 

155.5, 153.8, 151.4, 149.1, 137.6, 137.3, 130.8, 130.7, 128.7, 128.5, 128.4, 128.0, 127.5, 

127.0, 117.8, 114.3, 111.8, 106.7, 103.9, 70.9, 61.2, 56.3; MS (m/z): 467, 359; HRMS calcd 

for C30H26O5: 466.1740, found 466.1744. 

 

 

1,2-diphenylnaphtho[2,1-b]furan (47l) 

1
H-NMR (400 MHz) δ 7.94 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 4.8 Hz, 2H), 7.52 – 7.63 (m, 

7H), 7.41 (t, J = 7.2 Hz, 2H), 7.22 – 7.32 (m, 4H); 
13

C-NMR (100 MHz) δ 151.6, 150.3, 

134.9, 131.2, 131.1, 130.8, 129.6, 129.2, 128.6, 128.5, 128.4, 128.0, 126.4, 126.2, 124.5, 

123.9, 123.3, 119.8, 112.4; MS (m/z): 321, 249, 225, 209; HRMS calcd for C24H16O: 

320.1201, found 320.1196. 

 

 

Ethyl 4-(1-phenylnaphtho[2,1-b]furan-2-yl)benzoate (47m) 

1
H-NMR (400 MHz) δ 7.90 – 7.98 (m, 3H), 7.80 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.0 Hz, 

1H), 7.51 – 7.65 (m, 8H), 7.42 (t, J = 8.0 Hz, 1H), 7.29 (t, J = 8.0 Hz, 1H), 4.36 (q, J = 8.0 

Hz, 2H), 1.38 (t, J = 8.0 Hz, 3H); 
13

C-NMR (100 MHz) δ 166.4, 152.0, 149.2, 135.1, 134.5, 

131.2, 130.5, 130.4, 129.9, 129.8, 129.3, 129.2, 128.7, 128.5, 127.1, 126.5, 125.9, 124.7, 

123.7, 123.2, 121.8, 112.4, 61.2, 14.6; MS (m/z): 393, 379, 359, 333; HRMS calcd for 

C27H20O3: 392.1412, found 392.1412. 
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5-Chloro-2,3-diphenylbenzofuran (47n) 

1
H-NMR (400 MHz) δ 7.63 – 7.71 (m, 2H), 7.41 – 7.54 (m, 7H), 7.27 – 7.37 (m, 4H); 

13
C-

NMR (100 MHz) δ 152.6, 152.1, 132.4, 131.9, 130.4, 129.9, 129.3, 129.0, 128.9, 128.7, 

128.2, 127.3, 125.1, 119.9, 117.3, 112.3; MS (m/z): 305, 286, 271; HRMS calcd for 

C20H13ClO: 304.0655, found 304.0657. 

 

 

2-(3-Nitrophenyl)-3-phenylbenzofuran (47o) 

1
H-NMR (400 MHz) δ 8.59 (s, 1H), 8.11 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.59 

(d, J = 8.0 Hz, 1H), 7.46 – 7.56 (m, 6H), 7.37 – 7.47 (m, 2H), 7.28 (t, J = 8.0 Hz, 1H); 
13

C-

NMR (100 MHz) δ 154.3, 148.7, 147.8, 136.5, 133.8, 132.6, 132.3, 132.1, 132.0, 130.1, 

129.8, 129.6, 129.4, 128.6, 126.0, 123.6, 122.8, 121.7, 120.7, 111.6. 

 

 

Preparation of (E)-2-bromo-1,5-dimethoxy-3-(4-methoxystyryl)benzene (65): In an oven 

dried 250 ml flask, equipped with a stirring bar, potassium tert-butoxide solution (20.0 ml, 

20.0 mmol, 1.0 M solution in THF) was added dropwise to a solution of phosphonate ester 

(63) in freshly distilled dry THF (75 ml) at -78 
o
C under argon. Resulting reaction mixture 
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was stirred at -78 
o
C for 30 min followed by the addition of a solution of p-

methoxybenzaldehyde (64) (2.47 g, 18.11 mmol) in dry THF (50 ml) at the same 

temperature. The resultant reaction mixture was stirred at -78 oC for 1 h and at room 

temperature for 12 h. Upon completion, the reaction mixture was quenched with saturated 

ammonium chloride solution and majority of the THF was evaporated in vacuo. Residue was 

partitioned between water and ethyl acetate and organic layer was separated. Aqueous layer 

was then extracted with ethyl acetate (3 x 75 ml); organic layers were combined, washed 

with brine and dried over anhydrous magnesium sulfate. The solvent was evaporated and 

residue was purified by column chromatography using 10% EtOAc in hexanes to obtain pure 

product (65) (4.92 g, 78% yield). 
1
H-NMR (400 MHz) δ 7.50 (d, J = 8.8 Hz, 2H), 7.41 (d, J = 

16 Hz, 1H), 6.98 (d, J = 16.0 Hz, 1H), 6.91 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 2.8 Hz, 1H), 6.41 

(d, J = 2.4 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.83 (s, 3H); 
13

C-NMR (100 MHz) δ 159.8, 

159.7, 157.0, 139.1, 131.3, 129.9, 128.3, 125.9, 114.3, 105.1, 102.6, 98.9, 56.5, 55.7, 55.5.  

 

 

Preparation of (E)-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)(3,5-dimethoxyphenyl) 

methanone (67): In an oven dried 250 ml round bottom flask, equipped with a stir bar, n-

BuLi (3.91 ml, 9.77 mmol, 2.5 M solution in hexane) was added to a solution of stilbene (65) 

(3.25 g, 9.31 mmol) in dry THF (50 ml) at -78 
o
C under argon. Resulting yellow reaction 

mixture was stirred at -78 
o
C for 30 min followed by the addition of a solution of 3,5-

dimethoxybenzaldehyde (59) (1.55 g, 9.31 mmol) in dry THF (25 ml). The resultant mixture 

was stirred at -78 
o
C for 1 h followed by stirring at room temperature for 2 h. Upon 

completion, the reaction mixture was quenched with saturated ammonium chloride solution 

and majority of the THF was evaporated in vacuo. Residue was partitioned between water 

and ethyl acetate and organic layer was separated. Aqueous layer was then extracted with 
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ethyl acetate (3 x 75 ml); organic layers were combined, washed with brine and dried over 

anhydrous magnesium sulfate. The solvent was evaporated and residue was purified by 

column chromatography using 30% EtOAc in DCM to obtain pure alcohol (3.0 g, 6.87 

mmol) which was dissolved in benzene and activated manganese oxide (3.00 g, 34.36 mmol) 

was added to it. Resulting slurry was refluxed azeotropically for 6 h. Reaction mixture was 

filtered through celite and the filterate was evaporated to dryness. The residue was purified 

by column chromatography using 40% EtOAc in hexanes to obtain the pure ketone (67) 

(1.77 g, 4.08 mmol) in 60% yield over two steps.  
1
H-NMR (400 MHz) δ 7.27 (d, J = 8.0 Hz, 

2H), 6.95 – 7.05 (m, 3H), 6.70 – 6.87 (m, 4H), 6.63 (t, J = 4.0 Hz, 1H), 6.42 (d, J = 2.0 Hz, 

1H), 3.90 (s, 3H), 3.79 (s, 3H), 3.77 (s, 3H), 3.68 (s, 3H); 
13

C-NMR (100 MHz) δ 197.5, 

161.5, 161.0, 159.8, 158.6, 140.6, 137.9, 131.2, 129.8, 128.3, 123.3, 121.6, 114.2, 107.6, 

107.5, 105.9, 105.8, 101.4, 98.0, 97.9, 56.0, 55.8, 55.7, 55.5. 

 

 

Preparation of (E)-(3,5-dimethoxyphenyl)(2-hydroxy-4-methoxy-6-(4-methoxystyryl) 

phenyl)methanone (68): To a solution of ketone (67) (1.52 g, 3.50 mmol) in dry DCM was 

added boron tribromide (3.85 ml, 3.85 mmol, 1.0 M solution in DCM) at -78 
o
C under argon. 

Resulting reaction mixture was stirred for 3 h with steady increase in temperature to -50 
o
C. 

After the completion of reaction, the reaction mixture was neutralized by adding dilute HCl 

(1.0 M aqueous solution) and extracting the aqueous layer with DCM (4 x 25 ml). Organic 

layer was then subjected to brine wash and drying over anhydrous magnesium sulfate. 

Solvent was evaporated in vacuo to obtain crude product which was purified by column 

chromatography using 2% MeOH in DCM as elutent to obtain the pure alcohol (68) (1.30 g, 

3.09 mmol) in 88% yield. 
1
H-NMR (400 MHz) δ 11.54 (s, 1H), 6.89 (d, J = 8.0 Hz, 2H), 6.71 

– 6.78 (m, 4H), 6.67 (s, 1H), 6.63 (s, 1H), 6.43 – 6.52 (m, 3H), 3.88 (s, 3H), 3.78 (s, 3H), 
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3.68 (s, 3H); 
13

C-NMR (100 MHz) δ 200.4, 165.0, 164.9, 161.0, 159.8, 143.1, 130.5, 129.9, 

128.0, 127.3, 114.2, 113.8, 107.3, 107.3, 106.6, 106.6, 104.8, 104.8, 100.4, 100.3, 55.9, 55.6; 

MS (m/z): 421, 420, 419, 418, 416, 313, 312, 311, 310, 301, 300, 299, 298, 297, 295, 284, 

283, 254; HRMS calcd for C25H24O6: 420.15728, found 420.15831. 

 

 

Preparation of (E)-(3,5-dimethoxyphenyl)(4-methoxy-2-((4-methoxybenzyl)oxy)-6-(4-

methoxystyryl)phenyl)methanone (69): In an oven dried 100 ml flask equipped with a stir 

bar, benzophenone derivative (68) (0.50 g, 1.19 mmol) was taken in dry DMF (10 ml). To 

this, NaH (0.058 g, 1.43 mmol) was added at 0 
o
C under argon and the reaction mixture was 

allowed to stir for 15 min. To this reaction mixture, a solution of p-methoxybenzyl bromide 

(0.26 g, 1.31 mmol) in dry DMF (5 ml) was added at 0 
o
C and resulting reaction mixture was 

stirred at room temperature for 4 h with constant monitoring. After the completion of 

reaction, the reaction mixture was quenched with water and majority of the DMF was 

evaporated in vacuo. Residue was partitioned between water and ethyl acetate and organic 

layer was separated. Aqueous layer was then extracted with ethyl acetate (3 x 25 ml); organic 

layers were combined, washed with water and brine followed by drying over anhydrous 

magnesium sulfate. The solvent was evaporated and residue was purified by column 

chromatography using 20% EtOAc in hexane as elutent to obtain pure product (69) (0.56 g, 

1.03 mmol) in 86% isolated yield. 
1
H-NMR (400 MHz) δ 7.31 (d, J = 8.0 Hz, 2H), 6.90 – 

7.05 (m, 5H), 6.77 – 6.89 (m, 4H), 6.74 (d, J = 8.0 Hz, 2H), 6.66 (s, 1H), 6.45 (s, 1H), 4.89 

(s, 2H), 3.88 (s, 3H), 3.78 (s, 3H), 3.76 (s, 3H); 
13

C-NMR (100 MHz) δ 197.6, 161.5, 161.1, 

159.8, 159.4, 157.8, 141.4, 138.3, 131.3, 129.9, 128.9, 128.7, 128.4, 123.3, 122.2, 114.3, 
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114.0, 107.4, 105.8, 101.8, 99.4, 70.4, 55.9, 55.8, 55.6, 55.5; MS (m/z): 540, 522, 418, 417, 

121, 82, 40, 48; HRMS calcd for C33H32O7: 540.21429, found 540.21563. 

 

 

Preparation of (E)-3-(3,5-dimethoxyphenyl)-6-methoxy-2-(4-methoxyphenyl)-4-(4-

methoxystyryl)benzofuran (70): To a solution of 2-benzyloxybenzophenone derivative (69) 

(0.20 g, 0.37 mmol) in freshly distilled dry benzene (5 mL), P4-t-Bu solution (0.44 mL, 0.44 

mmol, 1.0 M solution in hexane) was added at room temperature and reaction mixture was 

heated to 170 
o
C in a sealed tube and stirred for 12 h. After the completion of reaction, 

benzene was partially evaporated and reaction mixture was purified by column purification 

using 40% ethyl acetate in hexanes to obtain pure product (70) (0.10 g, 0.19 mmol) in 52% 

yield. 
1
H-NMR (400 MHz) δ 7.56 (d, J = 8.0 Hz, 2H), 7.14 (bs, 1H), 6.96 – 7.07 (m, 3H), 

6.90 (bs, 2H), 6.77 – 6.88 (m, 4H), 6.64 – 6.72 (m, 3H), 3.93 (s, 3H), 3.83 (s, 3H), 3.81 (s, 

3H), 3.76 (s, 3H); 
13

C-NMR (100 MHz) δ 161.9, 159.7, 159.6, 158.5, 155.3, 150.2, 137.4, 

132.5, 130.7, 129.0, 127.9, 127.8, 124.0, 123.6, 122.4, 116.8, 114.3, 114.2, 109.1, 107.2, 

101.0, 95.4, 56.2, 55.8, 55.7, 55.6; MS (m/z): 524,523, 522, 521, 520, 508, 83, 81, 49, 48; 

HRMS calcd for C33H30O6: 522.20423, found 522.20560. 
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Preparation of (E)-5-(6-hydroxy-2-(4-hydroxyphenyl)-4-(4-hydroxystyryl)benzofuran-

3-yl)benzene-1,3-diol (48): To a solution of benzofuran derivative (70) (0.060 g, 0.12 mmol) 

in dry DCM was added boron tribromide (1.15 ml, 1.15 mmol, 1.0 M solution in DCM) at 0 

o
C under argon. Resulting reaction mixture was stirred for 6 h at room temperature. After the 

completion of reaction, the reaction mixture was neutralized by adding dilute HCl (1.0 M 

aqueous solution) and extracting the aqueous layer with DCM (4 x 25 ml). Organic layer was 

then subjected to brine wash and drying over anhydrous magnesium sulfate. Solvent was 

evaporated in vacuo to obtain crude product which was purified by column chromatography 

using 5% MeOH in DCM as elutent to obtain the pure Amurensin H (48) (0.035 g, 0.077 

mmol) in 67% yield. 
1
H-NMR (400 MHz) δ 7.47 (d, J = 8.0 Hz, 1H), 7.43 (d, J = 8.0 Hz, 

1H), 6.95 – 7.05 (m, 2H), 6.86 – 6.95 (m, 2H), 6.77 – 6.85 (m, 2H), 6.63 – 6.73 (m, 2H), 6.54 

(s, 1H), 6.52 (d, J = 2.5 Hz, 1H), 6.38 – 6.43 (m, 2H), 6.30 (d, J = 2.5 Hz, 1H); MS (m/z): 

453, 452, 451, 448, 357, 327; HRMS calcd for C28H20O6: 452.12598, found 452.12696. 

 

 

Preparation of 4-Chloro-6-(diethylamino)pyrimidine-5-carbaldehyde (77): To a solution 

of 4,6-dichloropyrimidine-5-carbaldehyde (76) (1.00 g, 5.65 mmol) in anhydrous THF (50 

ml) was added diethylamine (0.413 g, 5.65 mmol) followed by triethylamine (0.572 g, 5.65 

mmol) at room temperature under argon. Resulting reaction mixture was refluxed for 3 h 

with monitoring. After the completion of reaction, the reaction mixture was filtered and 

filtrate was evaporated. Residue was purified by column chromatography using 15% 

EtOAc:Hexane as elutent to obtain the product (77) (0.871 g, 4.08 mmol) in 72% yield. 
1
H-

NMR (400 MHz) δ 10.29 (s, 1H), 8.27 (s, 1H), 3.50 (q, J = 6.8 Hz, 4H), 1.18 (t, J = 7.2 Hz, 

6H); 
13

C-NMR (100 MHz) δ 187.8, 164.4, 160.5, 157.6, 110.4, 45.4, 12.5. 

 

Representative procedure for the preparation of 79a-c: To a solution of aldehyde (77) 

(0.500 g, 2.34 mmol) in anhydrous THF (25 ml) was added N-methyl-1-phenylmethanamine 
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(78a) (0.340 g, 2.81 mmol) followed by triethylamine (0.284 g, 2.81 mmol) at room 

temperature under argon. Resulting reaction mixture was refluxed for 5 h with monitoring. 

After the completion of reaction, the reaction mixture was filtered and the filtrate evaporated. 

Residue was purified by column chromatography using 20% EtOAc:Hexane as elutent to 

obtain the pure product (79a). 

 

4-(Benzyl(methyl)amino)-6-(diethylamino)pyrimidine-5-carbaldehyde (79a) 

Yield: 85%; 
1
H-NMR (400 MHz) δ 9.37 (s, 1H), 8.06 (s, 1H), 7.26 – 7.33 (m, 2H), 7.20 – 

7.26 (m, 3H), 4.91 (s, 2H), 3.66 (q, J = 6.8 Hz, 4H), 3.09 (s, 3H), 1.26 (t, J = 6.8 Hz, 6H); 

13
C-NMR (100 MHz) δ 181.9, 166.3, 165.6, 158.6, 137.1, 128.8, 128.0, 127.6, 96.4, 55.4, 

45.0, 40.2, 13.7. 

 

 

4-(Dibenzylamino)-6-(diethylamino)pyrimidine-5-carbaldehyde (79b) 

Yield: 82%; 
1
H-NMR (400 MHz) δ 9.36 (s, 1H), 8.14 (s, 1H), 7.20 – 7.35 (m, 6H), 7.09 – 

7.19 (m, 4H), 4.85 (s, 4H), 3.54 (q, J = 6.4 Hz, 4H), 1.21 (t, J = 7.2 Hz, 6H); 
13

C-NMR (100 

MHz) δ 181.9, 166.2, 165.5, 158.6, 136.9, 128.7, 127.9, 127.5, 97.6, 54.0, 44.9, 13.6. 
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4-(Bis(4-methoxybenzyl)amino)-6-(diethylamino)pyrimidine-5-carbaldehyde (79c) 

Yield: 80%; 
1
H-NMR (400 MHz) δ 9.33 (s, 1H), 8.13 (s, 1H), 7.04 (d, J = 8.4 Hz, 2H), 6.81 

(d, J = 8.0 Hz, 2H), 4.75 (s, 4H), 3.77 (s, 6H), 3.55 (q, J = 6.92 Hz, 4H), 1.21 (t, J = 8.0 Hz, 

6H); 
13

C-NMR (100 MHz) δ 182.1, 166.2,  165.6, 159.2, 158.8, 129.5, 129.0, 114.2, 97.7, 

55.5, 53.4, 45.0, 13.8. 

 

Representative procedure for the cyclization reaction to prepare 74a-c: To a solution of 

aldehyde (79a) (0.25 g, 0.84 mmol) in freshly distilled, dry benzene (10 mL), P4-t-Bu 

solution (0.92 mL, 0.92 mmol) was added at room temperature and reaction mixture was 

heated to reflux with monitoring (5 h). After the completion of reaction, benzene was 

partially evaporated and reaction mixture was purified by column purification using 10% 

ethyl acetate: petroleum ether to obtain the pure product (74a). 

 

 

N,N-Diethyl-7-methyl-6-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (74a) 

Yield: 83%; 
1
H-NMR (400 MHz) δ 8.37 (s, 1H), 7.45 – 7.55 (m, 4H), 7.38 – 7.44 (m, 1H), 

6.47 (s, 1H), 3.79 (s, 3H), 3.78 (q, J = 8.0 Hz, 4H), 1.33 (t, J = 8.0 Hz, 6H); 
13

C-NMR (100 

MHz) δ 156.1, 152.7, 151.8, 137.2, 132.6, 129.3, 128.9, 128.3, 102.6, 101.2, 43.7, 30.3, 14.0. 
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7-Benzyl-N,N-diethyl-6-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (74b) 

Yield: 58%; 
1
H-NMR (400 MHz) δ 8.37 (s, 1H), 7.30 – 7.43 (m, 5H), 7.16 – 7.23 (m, 3H), 

6.93 – 6.99 (m, 2H), 6.51 (s, 1H), 5.46 (s, 2H), 3.79 (q, J = 8.0 Hz, 4H), 1.34 (t, J = 8.0 Hz, 

6H); 
13

C-NMR (100 MHz) δ 156.0, 152.7, 152.0, 138.4, 137.0, 132.4, 129.4, 128.7, 128.6, 

128.3, 127.2, 126.7, 102.5, 101.8, 46.2, 43.5, 13.8. 

 

 

N,N-diethyl-7-(4-methoxybenzyl)-6-(4-methoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-

amine (74c) 

Yield: 50%; 
1
H-NMR (400 MHz) δ 8.36 (s, 1H), 7.26 (d, J = 8.0 Hz, 2H), 6.90 (d, J = 6.7 

Hz, 4H), 6.73 (d, J = 8.0 Hz, 2H), 6.42 (s, 1H), 5.36 (s,  2H), 3.83 (s, 3H), 3.77 (q, J = 8.0 

Hz, 4H), 3.73 (s, 3H), 1.32 (t, J = 8.0 Hz, 6H); 
13

C-NMR (100 MHz) δ 159.8, 158.8, 155.9, 

152.4, 151.8, 136.9, 130.8, 128.2, 124.9, 114.1, 114.0, 102.5, 101.3, 101.2, 55.6, 55.4, 45.6, 

43.6, 13.9. 
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CHAPTER 2. Development of pyrido[2,3-d]pyrimidines: New effective 

inhibitors of the Abelson Kinase 

 

Introduction 

Protein kinases are a group of enzymes that possess a catalytic subunit which 

transfers a gamma-phosphate group from nucleotide triphosphate (often ATP) to one or more 

amino acid residues in a protein substrate side chain. This transfer results in conformational 

change in protein structure, affecting its function. These enzymes fall into two broad classes, 

characterized with respect to their substrate specificity: serine/threonine specific and tyrosine 

specific.
1
  

 

 

Figure 1 

 

The structural features that can be recognized in all protein tyrosine kinases are an 

ATP binding site, three residues that are thought to be associated with the function of the 

third phosphate group (often called the gamma-phosphate group) of an ATP molecule bound 

to the enzyme, and a possible catalytic site of the enzyme that is an amino acid (Figure 1).
2
 

Phosphorylation of tyrosine residues control a wide range of properties in proteins, 

such as enzyme activity, subcellular localization and interaction between molecules.
3 

Furthermore, tyrosine kinases function in many signal transduction cascades, wherein 

extracellular signals are transmitted through the cell membrane to the cytoplasm and often to 

the nucleus where gene expression may be modified.
3 

Finally, mutations can cause some 

tyrosine kinases to become constitutively active, a nonstop functional state that may 

contribute to the initiation or progression of cancer.  
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Tyrosine kinases function in a variety of processes, pathways, and actions, and are 

responsible for key events in the body. The receptor tyrosine kinases function in 

transmembrane signaling, while tyrosine kinases within the cell function in signal 

transduction to the nucleus.
4
 Tyrosine kinase activity in the nucleus involves cell-cycle 

control and properties of transcription factors. In this way, in fact, tyrosine kinase activity is 

involved in the induction of mitosis (mitogenesis) in a cell. Proteins in the cytosol and 

proteins in the nucleus are phosphorylated at tyrosine residues during this process. Cellular 

growth and reproduction may rely in some part on tyrosine kinase. Tyrosine kinase function 

has been observed in the nuclear matrix, which is not comprised of chromatin, but of the 

nuclear envelope and a “fibrous web” that serves to physically stabilize DNA.
3 

Fibroblasts cells that synthesizes the extracellular matrix and collagen and are 

involved in wound healing - that have been transformed by the polyomavirus possess higher 

tyrosine activity in the cellular matrix. Furthermore, tyrosine kinase activity has been 

determined to be correlated to cellular transformation.
3
 It has also been demonstrated that 

phosphorylation of a middle-T antigen on tyrosine is associated with cell transformation, a 

change that is similar to cellular growth or reproduction.
3  

The transmission of mechanical force and regulatory signals is fundamental in the 

normal survival of a living organism. Protein tyrosine kinase plays a role in this task too. A 

protein tyrosine kinase called pp125 is likely at hand in the influence of cellular focal 

adhesions, as indicated by an immunofluorescent localization of the said kinase.
2
  

Cellular proliferation, explained in some detail above, may rely in some part on 

tyrosine kinase.
3
 Tyrosine kinase function has been observed in the nuclear matrix. Lyn, the 

first kinase discovered in the nuclear matrix, is part of the Src family of tyrosine kinases, 

which can be contained in the nucleus of differentiating, calcium-provoked kertinocytes. 

Lyn, in the nuclear matrix, among the nuclear envelope and the “fibrous web” that physically 

stabilizes DNA, was found functioning in association with the matrix.
3 

Yet another function of protein tyrosine kinase is that in the event of circulatory 

failure and organ dysfunction caused by endotoxin in rats, where the effects of inhibitors 

tyrphostin and genistein are involved with protein tyrosine kinase.
4
 It has become clear that 

tyrosine kinase can be involved in some unfortunate things.  
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Tyrosine kinase is also involved in signaling. Signals in the surroundings received by 

receptors in the membranes of cells are transmitted into the cell cytoplasm. Transmembrane 

signaling due to receptor tyrosine kinases relies heavily on interactions. An example is the 

mediation of the SH2 protein domain; it has been determined via experimentation that the 

SH2 protein domain selectivity is functional in mediating cellular processes involving 

tyrosine kinase. Receptor tyrosine kinases may, by this method, influence growth factor 

receptor signaling. This is one of the more fundamental cellular communication functions of 

metazoans.
5
 

However, tyrosine kinase activity is also involved in some unfavorable events; for 

instance, enhanced activity of the enzyme has been implicated in the derangement of the 

function of certain systems, such as cell division. Also included are numerous diseases 

regarding local inflammation such as atherosclerosis and psoriasis, or systemic inflammation 

such as sepsis and septic shock.
4
 In fact, the polyoma virus affects tyrosine kinase activity in 

the nuclear matrix.
3
 The polyoma virus attacks fibroblasts, which are a cell type involved in 

wound healing and cell structure formation in mammalian animals. Fibroblasts that are 

transformed by the polyoma virus involve higher tyrosine activity in the cellular matrix. In 

this way, it has been determined that tyrosine kinase activity is correlated to cellular 

proliferation.
3
 Moreover, tyrosine kinase can sometimes function incorrectly in a way that 

leads to non-small cell lung cancer.
6
 A common, widespread cancer, non-small cell lung 

cancer is the cause of death in more people than the total number of breast, colorectal, and 

prostate cancers altogether.
6
 Tyrosine kinases are particularly important today because of 

their implications in the treatment of cancer. A mutation that causes certain tyrosine kinases 

to be constitutively active has been associated with several cancers. Imatinib (brand names 

Gleevec and Glivec) is a drug able to bind the catalytic cleft of these tyrosine kinases, 

inhibiting its activity.
7
 

It is known among certain members of the scientific community that protein 

phosphorylation occurs on residues of tyrosine by both transmembrane receptor- and 

membrane-associated protein tyrosine kinases in normal cells.
2
 This occurrence is likely 

quite significant to the activity of communications that are originally broadcasted a number 

and variety of growth factors.
2
 This is evidenced by the observation that cells affected by the 
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Rous sarcoma virus, a retrovirus that causes sarcoma in chickens, display obvious structure 

modifications and a total lack of normal cell growth regulation.
2 

Rous sarcoma virus-encoded 

oncoproteins are protein tyrosine kinases that are the cause of and are required for this 

unfortunate cellular transformation.
2
 This is the case, that is, when the Rous sarcoma virus-

encoded oncoproteins are expressed. Also, tyrosine phosphorylation activity increases or 

decreases in conjunction with changes in cell composition and growth regulation.
2
 In this 

way, a certain transformation exhibited by cells is dependent on a role that tyrosine kinase 

demonstrates.
2
 Protein tyrosine kinases have a major role in the activation of lymphocytes.

2
 

In addition, they are functional in mediating communication pathways in cells types such as 

adrenal chromaffin, platelets, and neural cells.
2
 

Tyrosine kinase can become a radically functioning enzyme within an organism due 

to influences discussed, such as mutations and more. This behavior causes havoc and 

essential processes become disorganized. Systems on which the organism relies malfunction, 

resulting often in cancers. Of course, the possibility of preventing this type of circumstance is 

a highly desirable notion to those that are able to conduct related research. Much research has 

already noted the significant effect that inhibitors of the radically functioning protein tyrosine 

kinase enzymes have on related ailments. Encouragingly, research has been quite prolific in a 

number of different cases and in our case, we directed our efforts towards the role of 

substituted pyrido[2,3-d]pyrimidines as tyrosine kinase inhibitors. 

Tyrosine kinase inhibitors have the potential to reduce the spread of chronic myeloid 

leukemia.
8
 Chronic myelogenous leukemia (CML) is a hematopoietic stem cell disease that 

accounts for 15% of all adult leukemia and is characterized by the clonal expansion of cells 

carrying the Philadelphia (Ph) chromosome.
9
 The Ph chromosome, resulting from the 

translocation of genes from chromosomes 9 and 22 encodes the chimeric protein Bcr-Abl. 
9, 

10
 It is now well recognized that the Bcr-Abl protein is both the initial cause and major driver 

of CML. The rearranged Bcr-Abl gene encodes a constitutively active Abl kinase, meaning a 

kinase whose activity is constantly “on”. In simpler terms, in chronic myelogenous leukemia, 

the Abelson tyrosine kinase is improperly activated by the accidental fusion of the bcr gene 

with the gene encoding the intracellular non-receptor tyrosine kinase, c-Abl. This constitutive 

nature of Bcr-Abl is widely recognized by the scientific community and others as an 
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unfavorable characteristic because it results in excessive and uncontrolled proliferation of the 

myelogenous cells in which it is expressed.
11

  

 

 

Figure 2 

 

It is possible that a tyrosine kinase inhibitor could be a viable option for the treatment 

of Bcr-Abl-caused chronic myeloid leukemia.
12

 In fact, tyrosine kinase activity is crucial to 

the role of transformation of Bcr-Abl, so inhibiting it would be likely method to improve 

cancer symptoms. STI571 also known as Imatinib Mesylate and marketed under the trade 

name Gleevec, is an inhibitor specific to the Bcr-Abl tyrosine kinase (Figure 2). After clinical 

trials, it was concluded that the well-tolerated inhibitor has a significant favorable effect on 

chronic myeloid leukemia activity in patients after failure of interferon alpha treatment.
12

 

One can also infer, using the evidence in the report of the potential of tyrosine kinase 

inhibitor STI571 to reduce the spread of chronic myeloid leukemia, that the role of Bcr-Abl 

tyrosine kinase activity in the cancer‟s progression is vital. STI571 is, at present, the first-

choice treatment for patients with chronic myeloid leukaemia in chronic phase. Despite the 

impressive rate of complete haematological response and complete cytogenetical remissions, 

some cases show primary resistance or relapse after an initial response - secondary or 

acquired resistance. Thus, new drugs that inhibit STI571-resistant kinases are needed.
13
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Figure 3 

 

In a detailed study by Panek and coworkers, PD089828 (Figure 3) was reported as a 

prototype of a novel structural class of tyrosine kinase inhibitors, the 6-aryl-pyrido-[2,3-

d]pyrimidines, that is distinguished from previously reported protein tyrosine kinase 

inhibitors by possessing a pyrido[2,3-d]pyrimidine structure. This compound, which was 

identified by screening a compound library with assays that measured protein kinase 

activitiy, is ATP competitive for platelet-derived growth factor receptor (PDGFR), epidermal 

growth factor receptor (EGFR) and fibroblast growth factor receptor (FGFR) tyrosine 

kinases; is uniquely noncompetitive for c-Src tyrosine kinase and demonstrates prolonged 

inhibition of a variety of growth factor-mediated cellular functions whose effects are 

reversible.
14

 In conclusion, for the most part, PD089828 is an ATP-competitive inhibitor with 

broad tyrosine kinase inhibitory activity. But two limitations prevented it from being applied 

in a clinical setting. These are its extreme lack of solubility in aqueous media and lack of the 

ability to form soluble addition salts with strong acids. For these reasons, PD 089828 was 

unsuitable for intravenous (iv) administration in animal models of proliferative diseases. 

Furthermore, in vivo studies found PD 089828 to be poorly available after oral or 

intraperitoneal (ip) administration in rats.
15

 Therefore, further SAR studies based on PD 

089828 were conducted which focused not only on potency and selectivity but also on 

improving the bioavailability of this novel lead compound.  
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Figure 4 

 

Three regions of the parent molecule were targeted for initial SAR studies. 

Modifications made to the 2-, 6-, and 7-positions of the initial lead compound 2b were 

explored (Figure 4).
15

 

 

 

Scheme 1: Synthesis of PD 089828 and analogs 

 

Scheme 1 shows the general synthetic route used to prepare 2b and related analogs 

2a, c-f. The condensation of aldehyde 3 with an arylacetonitrile (4a-c) under basic conditions 

afforded the corresponding 2,7-diamino-6-arylpyrido[2,3-d]pyrimidine intermediate (5a-c). 

Treatment of 5a-c with sodium hydride in DMF followed by the addition of the designated 

isocyanate to the reaction mixture afforded the ureas 2a-c. Under these conditions, acylation 

occurred predominately at the 7-amino position. The 2-amino moiety of the diamine 
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intermediates 5b and 5c was directly displaced at high temperatures (140-180 °C) using the 

appropriate reacting amine as solvent and two equivalents of sulfamic acid to afford 

compounds 6a-c. Yields for this reaction were generally in the range 50-80%. Weak 

nucleophilic amines such as aniline did not react under these conditions. Elaboration of 6a-c 

to the targeted analogs 2d-f was accomplished as described above in Scheme 1 using NaH in 

DMF followed by the addition of the appropriate isocyanate.
15

 

The effects of phenyl substitution on tyrosine kinase inhibition were then 

investigated. It was found that disubstitution at the ortho positions of the phenyl ring by small 

groups such as 2‟,6‟-dichloro (2b) and 2‟,6‟-dimethyl (2c) resulted in a general increase in 

tyrosine kinase inhibitory activity relative to the unsubstituted compound 2a. It was reported 

that larger groups in the ortho position such as ethyl or methoxy resulted in decreased 

tyrosine kinase inhibitory activity across the panel of kinases tested. It was also observed that 

ortho substitution restricts the phenyl group to an orthogonal conformation with respect to 

pyrido[2,3-d]pyrimidine ring. To improve the poor aqueous solubility of 2b, several sites on 

the molecule were targeted for attaching aminoalkyl side chains. Unexpectedly, the 3-

(diethylamino)propyl side chain of  compound 2d was found to afford enhanced tyrosine 

kinase inhibitory activity activity for the PDGFr, FGFr, and c-src tyrosine kinases as well as 

improved aqueous solubility relative to the lead compound 2b. Also, the incorporation of an 

2-alkylamino side chain generally resulted in enhanced TKI potency, aqueous solubility, and 

bioavailability relative to the parent compound 2b.
15 

 

 

Figure 5 

 

A related structure, 2-amino-6-(2,6-dichlorophenyl)-pyrido[2,3-d]pyrimidin-7(8H)-

one (7a, Figure 5), which was also derived from mass screening, showed a similar profile 

toward the above kinases with micromolar inhibitory activity.
16

 Although both 2b and 7a 
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possess the same core pyrido[2,3-d]pyrimidine ring system, Klutchko and coworkers 

expected that a systematic SAR development of both leads would generate unique profiles 

with respect to inhibitory activity, bioavailability, metabolism, and selectivity.
16

 They have 

reported detailed syntheses and structure activity relationships (SAR) toward several tyrosine 

kinases for a series of analogues of 7a. A wide range of alkyl and aryl substituents have been 

introduced at the C-2 nitrogen (Figure 5) while keeping the substituent at the N-8 nitrogen 

either as methyl or ethyl. They also reported cellular effects, in vivo anticancer activity, 

animal bioavailability, and metabolism for selected compounds drawn from this series.
16

 

 

 

Scheme 2: Synthesis of new PD derivatives 

 

The synthesis of lead structure 7a and its C-2 acetamide derivative 7c is shown in 

Scheme 2. Hydrolysis of readily available 2,7-diaminopyridopyrimidine 5b in refluxing 

concentrated HCl provided the pyrimidin-7-ol in poor yield (19%) following recrystallization 

from N,N-dimethylformamide. N-8 methylation to give 7a was achieved in 49% yield with 

iodomethane in the presence of NaH in DMF at 60-80 °C for three hours. Heating 7a in 

refluxing acetic anhydride for twenty minutes produced the C-2 acetamide 7c in 61% yield. 

While suitable for making some simple C-2 amino analogues for initial SAR studies, the 

route outlined in Scheme 2 was too inefficient for generating a wide range of more elaborate 

analogs.  
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Scheme 3: Synthesis of PD precursors 

 

A more expedient route for synthesizing C-2 amino analogues of 7a was developed 

wherein the amine could be introduced in the last step by displacement of either a C-2 methyl 

sulfide, sulfoxide, or sulfone leaving group (Schemes 3 and 4). Thus, as shown in Scheme 3, 

room temperature condensation of commercially available 5-pyrimidinecarboxylic acid ester 

8 with either methyl- or ethylamine in THF provided 9a-b, which was reduced under 

standard reduction conditions to give benzylic alcohol 10a-b in high overall isolated yield. 

Oxidation with MnO2 proceeded cleanly to the 5-pyrimidinecarboxaldehydes 11a-b, which 

were then condensed with 2,6-dichlorophenylacetonitrile in DMF at 105 °C in the presence 

of anhydrous K2CO3 as base to provide the 7-imino-pyridopyrimidine product 12a-b in 50% 

yield. The use of more strongly basic conditions was avoided to keep the somewhat base 

sensitive methylthio group intact. Imine 12a-b was first acetylated and then hydrolyzed to 

provide key intermediate 2-methylthio-7-oxo-pyridopyrimidine derivatives 13a-b.
16
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Scheme 4: Synthesis of PD derivatives 

 

As detailed in Scheme 4, oxidation of 13a-b with 3-phenyl-2-(phenylsulfonyl)-

oxaziridine in chloroform provided the sulfoxide 14 in 70% yield, whereas oxidation with 

two equivalents of m-chloroperbenzoic acid under similar conditions gave the corresponding 

sulfone 15a-b in 92% yield. The sulfone 15a was quite reactive and could readily be 

hydrolyzed to the 2-hydroxy compound 16 in refluxing aqueous acetic acid. The choice of 

intermediate 13, 14, or 15 for subsequent amine condensations was based on the relative 

reactivity of the leaving group and that of the amine to be introduced at the C-2 position. For 

example, condensations with more nucleophilic alkylamines were best carried out on sulfides 

13a-b, whereas the less reactive arylamines were best condensed with the more reactive 

sulfoxide 14 or sulfone 15a-b. Generally, the reaction conditions for amine displacement 

involved heating the sulfide, sulfoxide, or sulfone with a 20-100% excess of amine either 

neat or diluted with a solvent at temperatures of 100 - 250 °C.
16

  

In summary, the initial SAR survey revealed that while C-2 amino analogues with 

chain extended aliphatic dibasic moieties improved aqueous solubility and potency relative to 

lead structure 7a, the introduction of simple arylamino moieties affected the potency much 

more dramatically. Since there appeared to be little, if any, increase in potency for N-8 ethyl 
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versus methyl substitution, further SAR studies within this series were continued with methyl 

at this position. Having established the essential requirement of C-2 arylamino substitution, a 

series of analogues with simple position substitution around the aniline-ring were explored to 

determine the effect on SAR. Relative to unsubstituted aniline-derivative 17 (R = H), mono-

substitution of the aniline ring with simple electron-withdrawing or electron-donating group 

generally deceased the potency of these compounds towards most of the kinases tested. Di-

substituted anilino compounds and mono-substituted compounds with larger substituents in 

the 3‟- or 4‟-positions showed the same general pattern of tyrosine kinase inhibition toward 

the PDGFr, FGFr, and c-Src kinases relative to unsubstituted aniline-derivative 17 (R = H). 

On the other hand, analogues possessing either phenolic (17, R = OH) or hydroxymethyl (17, 

R = -CH2OH) functionality at these positions displayed potency generally equivalent to or 

better than 17 (R = H) toward the kinases profiled. The marked enhancement in potency for 

17 (R = -CH2OH), possessing improved aqueous solubility over the parent N-aryl compound 

17 (R = H), argued for additional SAR development around the 3‟- and 4‟- positions with 

analogues that would impart even greater aqueous solubility. Compounds incorporating 

various cationic (amine) or anionic (acid) moieties to test this concept were developed and 

tested.
16 

 

 

Figure 6: Comparison PD derivatives and STI571 growth inhibition of Bcr-Abl cell line 
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Various comparative studies of substituted pyrido[2,3-d]pyrimidines with STI571 (1) 

resulted in the development of compounds that vary in their specificities for different 

tyrosine kinases and were more potent than STI571 (1) (Figure 6).
17

 Among these potential 

drug candidates, PD173955 (20), shown in Figure 6, was the most promising. PD173955 (20) 

inhibits the Abelson kinase (Abl) and the Src and Yes tyrosine kinases that are also often up-

regulated in cancer.
18 

PD173955 inhibits the proliferation of many cancer cell types, but two 

limitations prevent it from being applied in a clinical setting. These are its ability to inhibit 

kinases other than the Abl kinase, which results in toxicity for proliferating normal cells 
19

 

and its low solubility in water. In its favor, its affinity is much lower for most kinases other 

than those of the Src family of which Abl is a member, and PD173955 inhibits both the 

active and inactive forms of Abl. By contrast, Imatinib (1) only inhibits the active form of the 

enzyme. In addition, the Ki for inhibition of Abl by PD173955 is very low, making it a more 

potent inhibitor of Abl and a more effective inhibitor of cancer cell proliferation than 

Imatinib.
20, 22, 24

 Thus, we speculated that, with further modification, PD173955 may be 

developed as an effective inhibitor of c-Abl to treat patients with CML and other cancers, 

including those that have developed Imatinib-resistance. 

 

Results and Discussion 

Clarkson and Duyster showed that 20 (Figure 7) and related compounds inhibit Bcr-

Abl kinase activity with greater potency than Imatinib. Moreover, many of these compounds 

also inhibit kinase domain mutants of Bcr-Abl that are resistant to Imatinib.
21

 With the 

emerging need for kinase inhibitors that will kill cells that express Imatinib-resistant Bcr-Abl 

kinase domain mutants, PD173955 is a prime candidate for further development.  

 

 

Figure 7 
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To investigate the structural elements of PD173955 that make it a good inhibitor of 

the Abl kinase, we planned to synthesize analogs of 20 (Figure 7). As reported earlier, the 

bicyclic ring and the halogen containing ring subunit of PD173955 interact with several 

amino acid residues in the crystal structure of the kinase complex and the orthogonal 

relationship between ortho-substituted phenyl ring and pyrido[2,3-d]pyrimidinone is 

important towards the activity of these compounds.
22 

We decided to conduct structure-

activity relationship by varying the ortho-substitution on phenyl ring, thereby varying the 

orthogonal relationship. As discussed below, many analogs of 24 were also synthesized. 

These adducts were termed „PDC‟ because of the extra carbon atom between the phenyl 

group and the secondary amino group (Figure 7). These were also expected to be good 

inhibitors of the Abl kinase because the crystal structure of Abl with PD173955 shows the 

methylthiophenyl ring extending into the solution space and not interacting extensively with 

the protein.
22 

 

 

Scheme 5: Synthesis of PD precursor 11a 

 

Scheme 5 outlines the synthesis of common intermediate 11a which started with the 

room temperature condensation of commercially available 5-pyrimidinecarboxylic acid ester 

8 with aqueous methylamine in THF to provide 9a in 95% yield. Ester 9a was reduced under 

standard lithium aluminum hydride reduction conditions to give alcohol 10a in 94% yield. 
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Oxidation of alcohol 10a with activated manganese dioxide proceeded cleanly to 5-

pyrimidinecarboxaldehyde 11a in 81% yield.
16

  

 

 

Scheme 6: Synthesis of PD precursor 13a 

 

The condensation of aldehyde 11a with 2,6-dichlorophenylacetonitrile in DMF at 105 

°C in the presence of anhydrous potassium bicarbonate as the base provided 7-imino-

pyridopyrimidine product 12a. This reaction was hampered by problems related to solubility 

and low yields (Scheme 6). Subsequent acetylation and hydrolysis were also inefficient 

probably due to impure product formed at the previous step. At this stage, we looked for 

different and more efficient ways to assemble the basic skeleton of pyrido[2,3-d]pyrimidine 

13a.  

 

 

Scheme 7: New method to prepare pyrido[2,3-d]pyrimidines.
23 

 

Ensuing literature search resulted in a publication from Blass et al. reporting a facile, 

potassium fluoride/alumina mediated method for the preparation of functionalized 

pyrido[2,3-d]pyrimidines (Scheme 7).
23

 Their methodology used solid supported reagents 

and possessed the advantages of both solution and solid phase chemistry. Like solid phase 

synthesis, excess support bound reagent can be used and removed by filtration, avoiding 

cumbersome aqueous work-ups and decreasing solvent waste issues. Also, the products can 
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be isolated by filtration and removal of the solvents, eliminating the need for a cleavage step 

that is required in solid phase syntheses. Additional benefits included taking advantage of the 

strongly basic nature of potassium fluoride/alumina, which has allowed it to replace organic 

bases in a number of reactions including, but not limited to, selective N-alkylation of amides, 

epoxidation, diazetization, Sonogashira couplings, Suzuki couplings, Knoevenagel reactions, 

and Horner-Emmons chemistry.
23

 As explained earlier, one of the primary methods to 

prepare the requisite pyrimidinone scaffold core for this class of compounds is a tandem 

Knovenagal and amide/ester exchange reaction between the functionalized pyrimidine 

aldehyde 11 and a suitable phenyl acetic acid derivative. When these reactions were 

performed using standard bases, such as potassium carbonate, the yield and purity of the 

crude products was moderate at best and extended reaction times were required.
16

 Blass, 

however, reported that the application of potassium fluoride/alumina led to a substantial 

improvement in the overall yield and purity of the desired final products as well as 

significantly shorter reaction times.
23 T

his pathway also reduced the number of steps required 

to synthesize pyrido[2,3-d]pyrimidines (22) as acetylation and hydrolysis were not needed 

with this methodology unlike before (Scheme 7). 

 

 

Scheme 8: Synthesis of PD precursor 23 

# X Y 22 (% yield) 23 (% yield) 

a Cl Cl 62* 87 

b Cl H 73 85 

c H H 89 65 

d F F 83 84 

e Br H 92 82 

*based on recovered starting material 

Table 1: Summary of synthetic results 



www.manaraa.com

74 
 

 

With the availability of this new methodology, we synthesized analogues of 22. 

Condensation of aldehyde 11a with ethyl-2,6-dichlorophenyl acetate was accomplished with 

KF/Al2O3 and dimethyl acetamide at room temperature to give functionalized pyrido[2,3-

d]pyrimidinone 22a in poor yield. The main reason for the poor yield is lack of solubility of 

compound 22a in usual solvents. The yield of 22a was drastically increased when column 

chromatography was replaced by recrystallization from N,N-dimethylformamide as a way to 

purify the product. Other analogs (22b-e) were synthesized in excellent yields and were 

purified by usual column chromatography (Scheme 8, Table 1). Oxidation of 22a-e with two 

equivalents of meta-chloroperbenzoic acid in chloroform gave corresponding sulfones 23a-e 

in excellent yields (Scheme 8, Table 1). 

 

 

Scheme 9: Synthesis of PD and PDC analogs 

# X Y R Yield (%) Compound 

1 Cl Cl NH2 61 24a 

2 Cl H NH2 77 24b 

3 H H NH2 53 24c 

4 F F NH2 67 24d 

5 Br H NH2 48 24e 

6 Cl Cl SMe 64 24f 

7 Cl Cl SMe 57 20 

8 Cl Cl NH2 55 25 

Table 2: Synthesis of PD and PDC analogues 

 

Initially, the conversion of sulfone 23a into analogs of PD173955 using various 

anilines in boiling aprotic solvents failed. Interestingly, the reaction of sulfone 23a with 3-

aminobenzylamine which is a more reactive nucleophile, in boiling DMF generated the PDC 
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adduct 24a in good yield (Scheme 9; Table 2 – entry 1). PD173955 (20) and its analog 25 

were ultimately synthesized by reacting sulfone 23a with appropriate aniline derivative, 

using boiling diglyme as the solvent in a sealed tube, conditions much harsher than those for 

the synthesis of the PDC and its analogs (Scheme 9). The PDC adduct 24a was more soluble 

than PD173955 in aqueous solutions. Our interest in understanding the effect of changes in 

the PD structure on its ability to inhibit Abl kinase led us to synthesize various PD and PDC 

analogs 24a-f, 20 and 25 (Table 2). The reason to develop the analogs 26 and 27 was to 

circumvent the problem of low chemical reactivity of aromatic amine moieties of analogs 

24a and 25. The synthetic route towards the synthesis of 26 and 27 consist of standard two 

step sequence where 24a and 25 were first reacted with bromoacetyl bromide under basic 

conditions followed by the treatment with ammonia to get 26 and 27 in good yields (Scheme 

10).  

 

 

Scheme 10: Synthesis of PD-Gly and PDC-Gly analogues 

 

These compounds were tested for Abl-kinase inhibition in Dr. Marit Nilsen-

Hamilton‟s laboratory, our collaborators in the biochemistry, biophysics and molecular 

biology department at Iowa State University. The results of inhibition of Abl kinase (Ki) are 

shown below in Figures 8 – 10.  The number in parentheses after the Ki is the number of 

independent experiments performed to obtain the Ki.  The asterisks represent the p values 

determined from the Pearson product moment correlation analysis (***, p<0.0005, **, 

p<0.005, *, p<0.03) 
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Figure 8 

 

The 2,6-dichlorophenyl substituent 24a exhibited the strongest inhibition.  

 

 

Figure 9 

 

The activity of 20 and adducts 25 and 27 was tested using the standard protocol and the 

results are shown below. 

 

 

Figure 10 

 

Compounds 24a-e were synthesized to probe the steric and electronic influences on 

the aryl ring. Molecular models show that the 2,6-dichlorophenyl group in 20 is orthogonal to 

the pyrido[2,3-d]pyrimidine subunit as a result of nonbonded interactions of the chlorine 

atoms.
22

 The effectiveness with which c-Abl was inhibited by the synthesized analogs was 

determined from the Ki for each compound, which increases with decreasing inhibitory 

effectiveness. As shown above, compared with the 2-chlorophenyl substituent, the 

monochlorophenyl and phenyl substituents have increasingly higher Ki values. The 2,6-

difluorophenyl substituent (24d), which is sterically the same size as the phenyl group, has 

about the same inhibitory efficiency as PDC with the 2-chloro (24b) and 2-bromo (24e) 
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substituents. Structural analysis of the interaction of PD173955 with the Abl kinase identified 

the chloro substituents of the aryl ring as being embedded in the enzyme‟s ATP-binding 

pocket and held with multiple van der Waals interactions, which contribute to the affinity of 

the molecule for the Abl kinase.
22

 The chlorine atoms limit the rotation of the aryl ring to a 

rotational angle that is the same as for the central phenyl group of Imatinib. These phenyl 

groups of Imatinib and PD173955 sit in the same position, similarly rotated, in the protein. 

The removal of one or both chlorine atoms from 24a or their replacement with fluoro 

substituents would allow rotational flexibility of the compound when not bound to the 

enzyme and might increase the Ki compared with 24a by increasing koff in the equilibrium 

shown below due to increased entropy of the unbound 24a. 

 

 

Figure 11 

 

The much higher Ki of 24c compared with 24b, 24d, or 24e suggests that electronic 

effects also play an important role in the interaction of PDC with the enzyme. It is likely that 

the relevant interacting amino residue might be lys271 that lies close enough to the inhibitor 

in the enzyme pocket to interact with PD173955 (and presumably also PDC) through van der 

Waals forces as described for the crystal structure, but which might also be close enough to 

interact electrostatically with the aryl ring substituents through its epsilon amino group.  

Although most van der Waals interactions reported for PD173955 with Abl are 

located around the bicyclic substituent and the dichlorophenyl group, two of the ten 

interactions are with amino acids that contact the methylthiophenyl segment of PD173955. 

Alteration of the molecular structure in this region by insertion of an additional carbon 

between the secondary amino group and the aryl groups resulted in an increase in Ki of about 

200-fold, which is consistent with the loss of 2 of the 10 van der Waals interactions that hold 

the inhibitor in place in the protein‟s ATP-binding pocket.  The 10-fold decrease in the Ki 

with the replacement of the methylthio group by an amino group on either PD or PDC 
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probably reflects the gain in van der Waals or an electrostatic interaction with the enzyme by 

way of the amino group. 

In summary, the effects of substituents on the aryl ring were studied by the 

preparation and testing of several PD173955 analogs. The results are consistent with the 

observation from the crystal structure that electronic and van der Waals forces are likely to 

be involved in the interaction of inhibitor and enzyme. They also show that inserting a single 

carbon atom into the C-N bond in the aniline subunit (PDC) reduced the kinase inhibition by 

a factor of 200, consistent with the loss of 20% of the van der Waals interactions between 

inhibitor and protein. Despite its decreased affinity for Abl compared with PD, PDC (24a) 

and PDC-Gly (26) exhibits a Ki very similar to that reported for Imatinib [4 x 10
-8

] 
24

 and is 

significantly more water soluble compared with PD173955.  Furthermore, replacing the 

thiomethyl group on PD173955 with either an amino (25) or a glycyl (27) group resulted in a 

decrease in the Ki of 10-fold, which is 1000-fold lower than the Ki reported for Imatinib. 

 

 

Figure 12: Structure of Cyanin dyes Cy3 and Cy5 

 

Since PDC-Gly 26 exhibit a Ki similar to that of Imatinib (1), we next decided to tag 

this compound with fluorescent dyes and use it for molecular imaging. The use of fluorescent 

dyes in biology is ever-increasing and is the basis for many advancements in science; for 

example, the sequencing of human genome.
25

 The fluorescent dyes short-listed for the 

imaging were cyanine dyes Cy3 (28a) and Cy5 (29a) (Figure 9). A generic cyanine dyes 
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consists of a conjugated system based on a polymethine chain linking two nitrogen-

containing heterocycles (e.g., indoles, benzothiazoles). They are generally named based on 

the number of carbon atoms in the polymethine chain. Trimethine and pentamethine dyes 

exhibit absorption maxima at 550 and 650 nm, respectively, and emission maxima around 

570 and 670 nm, respectively, in the green or red part of the spectrum.
26

 Their spectroscopic 

and photophysical properties do not change significantly after covalent attachment to various 

molecules. These dyes are suitable for the imaging of single molecules in living cells and are 

useful reagents for the labeling of proteins and peptides. The application of cyanine dyes as 

donors/acceptors in fluorescence resonance energy transfer (FRET) based methods is 

especially popular.
27

 The dyes are generally converted into their N-hydroxysuccinimide 

esters 28b and 29b for attachment to the proteins and peptides. 

 

 

Scheme 11: Synthesis of common intermediates. 

 

Our synthetic scheme for these dyes was based on the work done by Jung and 

coworkers.
25

 The synthesis of the Cy3 dye 28a and Cy5 dye 29a and their NHS esters 28b 

and 29b respectively, began with the synthesis of common intermediates (Scheme 11). 

Commercially available trimethylindole 30 was alkylated with methyl iodide in chloroform 

under sealed tube conditions to give the 1,2,3,3-tetramethylindolium iodide 31 in 65% yield 
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(Scheme 11). A similar reaction of trimethylindole 30 to give 5-carboxypentyl-2,3,3-

trimethylindolium bromide 32 was done by heating the indole 30 with 6-bromohexanoic acid 

at 120 
o
C under neat conditions to get the addition product 32 in 78% yield (Scheme 11). 

Conversion of 1,2,3,3-tetramethylindolium iodide 31 to Fischer‟s base 33 was accomplished 

in 61% yield by stirring 31 with 1.0 M potassium hydroxide solution at ambient temperature 

(Scheme 11). 

 

 

Scheme 12: Synthesis of Cy3 dye and its NHS ester 

 

Condensation of Fischer‟s base 33 with commercially available N,N‟-

diphenylformamidine (37) in the presence of excess acetic anhydride as solvent was tried 

under various conditions, but acetanilidylvinyl indolium salt 38 couldn‟t be prepared 
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(Scheme 12). Finally, we were able to prepare acetanilidylvinyl indolium salt 38 by 

condensing tetramethylindolium iodide 31 with N,N‟-diphenylformamidine under refluxing 

conditions in the presence of acetic anhydride and few drops of acetic acid (Scheme 12). This 

compound was then reacted with the carboxypentylindolium salt 32 in ethanol in the 

presence of triethylamine to give the desired Cy3 dye 28a in 61% yield as a red powder. The 

dye was easily converted into the N-hydroxysuccinimide ester (NHS) by treatment with N,N-

disuccinimidyl dicarbonate (DSC) in the presence of pyridine to give the activated dye 28b in 

72% yield. All the pertinent spectroscopic data, especially NMR and mass spectrometry, 

were in agreement with the previously reported synthesis and structures assigned.
25

 

 

 

Scheme 13: Synthesis of Cy5 dye and its NHS ester 

 

For the synthesis of the Cy5 dye 29a and its NHS ester 29b (Figure 12), the three-

carbon spacer 35 was prepared (Scheme 11). Condensation of commercially available 

malondialdehyde bis(dimethyl acetal) with aniline under acidic conditions afforded the 
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anilino anilinium salt 35 in 85% yield (Scheme 11).
28

 The reaction of 35 with Fischer‟s base 

33 in refluxing acetic acid afforded the anilinobutadienyl salt 36 in 72% yield (Scheme 13).  

Finally, the reaction of the activated indolium salt 36 with the carboxypentylindolium salt 32 

in ethanol in the presence of sodium acetate afforded the desired Cy5 dye 29a in 63% yield 

as a blue powder (Scheme 13). The dye was easily converted into the N-hydroxysuccinimide 

ester (NHS) by treatment with commercially available N,N‟-disuccinimidyl dicarbonate 

(DSC) in the presence of pyridine to give the activated dye 29b in 78% yield (Scheme 13). 

Again, all spectroscopic data, especially NMR and mass spectrometry, were in agreement 

with the previously reported synthesis and structures assigned.
25

 

 

 

Scheme 14: Conjugation of PDC-Gly with Cy3-NHS ester and Cy5-NHS ester 

 

Activated Cy3-NHS ester (28b) was then reacted with previously developed abelson 

kinase inhibitor PDC-Gly (26) under basic conditions using N,N-diisopropylethylamine in N-

N‟-dimethylformamide at 60 
o
C to obtained fluorescent tagged compound 39 in 73% yield 

(Scheme 14). Similarly, compound 26 was tagged with activated Cy5-NHS ester (29b) under 

similar conditions to get the fluorescent tagged compound 40 in 75% yield (Scheme14).  
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Scheme 15: Synthesis and activation of new Cy3 dye 41 

 

The synthetic route for the synthesis of Cy3 and Cy5 was fairly. However, the 

preparation of acetanilidylvinyl indolium salt 38 by condensing tetramethylindolium iodide 

31 with N,N‟-diphenylformamidine under refluxing conditions was the most difficult and 

limiting step as it was not reproducible every time (Scheme 12). In order to side-step this 

problem, we turned our attention to another Cy3 dye (41a, Scheme 15). A special structural 

characteristic of this Cy3 dye 41a was its symmetrical design due to the presence of two 

carboxypentyl side chains (Scheme 15).
29

 A major synthetic simplification was achieved due 

to this design as now, instead of condensing two different indoleium salts, we condensed 

carboxypentylindolium salt 32 with itself resulting in the reduction number of steps. The two 

common pathways used to synthesize this dye 41a are outlined in Scheme 15. In first 

pathway, carboxypentylindolium salt 32 was treated with N,N‟-diphenylformamidine (37) in 

the presence of acetic anhydride, acetic acid and pyridine under reflux conditions to obtain 
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the Cy3 dye 41a in 68% yield.
29

 In other and still simpler pathway, carboxypentylindolium 

salt 32 was refluxed in the presence of triethylorthoformate in pyridine to give Cy3 dye 41a 

in 70% yield. Both pathways were easily reproducible with consistent yields and analytical 

data. This new Cy3 dye 41a was activated by converting it into the N-hydroxysuccinimide 

ester (NHS) by the usual method of treatment with N,N-disuccinimidyl dicarbonate (DSC) in 

the presence of pyridine to give the activated dye 41b in 72% yield (Scheme 15). 

In order to explore and standardize the reactivity of this new Cy3-NHS ester 41b, we 

treated it with 1,6-hexanediamine under usual basic conditions (Scheme 17). To our surprise, 

we recovered a twenty seven membered macrocycle 42 in excellent yield. To confirm this, 

we tried another experiment where instead of condensing Cy3-NHS ester 41b with equimolar 

amount of 1,6-hexanediamine, we used excess diamine and even under these conditions, the 

only product obtained was twenty seven membered macrocycle 42. In order to check the 

scope of this novel method to form macrocycles, we treated Cy3-NHS ester 41b with 

commercially available meta-xylenediamine and para-xylenediamine. Both reactions 

successfully resulted in the formation of macrocycles 43 and 44 in 69% and 64% yield 

respectively (Scheme 17).  
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Scheme 17: Synthesis of Cy3 macrocycles 

 

These results, although surprising, presented us with an opportunity to develop an 

entirely new Cy3 dye in the form of a macrocycle with a handle in order to attach it to 

various biomolecules (Figure 13). 
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Figure 13: Cy3 dye macrocycle with handle 

 

We envisioned a bis-aminobenzoate type compound as it would serve the purpose by 

having an appropriate spacer as well as the handle attached on it. Scheme 18 outlines the 

synthesis of methyl-3,5-bisaminomethyl benzoate salt 50 starting from the commercially 

available 3,5-dimethylbenzoic acid 46. Acid 46 was converted to its methyl ester 47 by 

refluxing it in methanol under acidic conditions. Ester 47 was then converted to bis-bromo 

ester 48 using typical N-bromosuccinimide conditions, which in turn, was converted to azide 

49 by the treatment with sodium azide. Azide 49 was reduced to amine and converted to 

ammonium salt 50 in one-pot reaction using triphenylphosphine.
30
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Scheme 18 

 

With the appropriate ammonium salt 50 in hand, we reacted it with Cy3 dye 41b 

using excess base to successfully obtained the new Cy3 macrocycle based dye 45 in 67% 

yield (Scheme 19). 

 

 

Scheme 19: Synthesis of the new Cy3 dye macrocyle 
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In another example, activated Cy3 41b was reacted with commercially available L-

lysine methyl ester dihydrochloride to obtain second example of Cy3 macrocycle 51 with a 

handle in 65% yield (Scheme 20. 

 

 

Scheme 20: Synthesis of the new Cy3 dye macrocyle 

 

In conclusion, we successfully developed methods to tag biologically active 

molecules with various cyanin dyes for fluorescent imaging. We also improved the synthetic 

method for Cy3 dye by reducing the number of steps required as well as standardizing the 

reaction conditions. We were able to synthesize uncommonly large macrocycles 42 - 44 

based on Cy 3 dye and succeeded in utilizing this method to invent new Cy3 dyes 45 and 51 

with a handle which can be used to tag various peptides and protiens. 

 

Experimental 

Unless otherwise noted, materials were obtained from commercial suppliers and used without 

purification. Tetrahydrofuran and diethyl ether were distilled from sodium and 

benzophenone. Dichloromethane, benzene and diisopropyl amine were distilled over calcium 

hydride. All experiments were performed under an argon atmosphere unless otherwise noted. 

Organic extracts were dried over anhydrous magnesium sulfate. Nuclear magnetic resonance 

experiments were performed with either a Varian 300 MHz or Bruker 400 MHz instrument. 

All chemical shifts are reported relative to CDCl3 (7.27 ppm for 
1
H and 77.23 ppm for 

13
C), 
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unless otherwise noted. Coupling constants (J) are reported in Hz with abbreviations: s = 

singlet, d = doublet, t = triplet, q = quartet, m = multiplet. High resolution mass spectra were 

recorded on a Kratos model MS-50 spectrometer. Standard grade silica gel (60 Å, 32-63 μm) 

was used for flash column chromatography. 

 

Representative procedure for the preparation of 22a-e 

To a stirred solution of 0.400 g (2.19 mmol) of 4-amino-2-(methylthio) pyrimidine-5-

carbaldehyde 11a and 0.638 g (2.74 mmol) of ethyl 2-(2,6-dichlorophenyl)acetate 21a in 

10.0 mL of dry DMA, 2.536 g of KF/Al2O3 (40 wt %, KF, Sigma–Aldrich catalog #316385) 

was added in batches of 0.5 g every 30 min. The reaction mixture was then stirred at RT for 

24 h under argon after which it was filtered through Celite, the residual solid was washed 

with methylene chloride and the combined filtrates were concentrated. Due to the poor 

solubility of dichloropyridopyrimidinones derivative 5a in most solvents, it was purified by 

recrystallization from DMF to obtain 0.480 g (62%). Other pyridopyrimidinones were 

purified by column chromatography over silica gel using 1:1 hexanes:EtOAc to give pure 

products. 

 

 

6-(2,6-dichlorophenyl)-8-methyl-2-(methylthio)pyrido[2,3-d]pyrimidin-7(8H)-one (22a). 

Yield 62%; 
1
H-NMR (400 MHz, CDCl3): δ 8.66 (s, 1H), 7.60 (s, 1H), 7.41 (d, J = 8.0 Hz, 

2H), 7.29 (d, J = 8.0 Hz, 1H), 3.83 (s, 3H), 2.67 (s, 3H); 
13

C-NMR (100 MHz, CDCl3): δ 

173.9, 161.1, 156.7, 154.6, 136.1, 135.6, 133.9, 130.4, 129.7, 128.3, 109.4, 28.7, 14.8; 

LRMS: 352.0, 200.0, 154.1; HRMS calculated M
+
 for C15H11Cl2N3OS: 352.0073; found: 

352.0074. 

 



www.manaraa.com

90 
 

 

 

6-(2-chlorophenyl)-8-methyl-2-(methylthio)pyrido[2,3-d]pyrimidin-7(8H)-one (22b). 

Yield 73%; 
1
H-NMR (400 MHz, CDCl3): δ 8.63 (s, 1H), 7.64 (s, 1H), 7.42 - 7.49 (m, 1H), 

7.27 – 7.37 (m, 3H), 3.80 (s, 3H), 2.65 (s, 3H); 
13

C-NMR (100 MHz, CDCl3): δ 173.5, 161.8, 

156.5, 154.4, 135.0, 134.8, 133.8, 131.7, 131.5, 130.0, 129.9, 126.9, 109.5, 28.6, 14.7; 

LRMS: 318.0; HRMS calculated M
+
 for C15H12ClN3OS: 317.0390; found: 317.0396 

 

 

8-methyl-2-(methylthio)-6-phenylpyrido[2,3-d]pyrimidin-7(8H)-one (22c).  

Yield 89%; 
1
H-NMR (400 MHz, CDCl3): δ 8.61 (s, 1H), 7.67 (s, 1H), 7.61 – 7.66 (m, 2H), 

7.34 – 7.45 (m, 3H), 3.79 (s, 3H), 2.63 (s, 3H); 
13

C-NMR (100 MHz, CDCl3): δ 172.8, 162.4, 

156.3, 153.9, 135.6, 132.8, 132.6, 128.9, 128.7, 128.4, 109.9, 28.5, 14.6; LRMS: 284.1, 

176.1, 158.1; HRMS calculated M
+
 for C15H13N3OS: 283.0779; found: 283.0778 

 

 

6-(2,6-difluorophenyl)-8-methyl-2-(methylthio)pyrido[2,3-d]pyrimidin-7(8H)-one (22d). 

Yield 92%; 
1
H-NMR (400 MHz, CDCl3): δ 8.64 (s, 1H), 7.72 (s, 1H), 7.30 – 7.40 (m, 1H), 

6.93 – 7.04 (m, 2H), 3.81 (s, 3H), 2.64 (s, 3H); 
13

C-NMR (100 MHz, CDCl3): δ 173.9, 162.0 

(d, J = 28.0 Hz), 161.2, 159.5 (d, J = 28.0 Hz), 156.7, 154.5, 136.9, 130.6 (t, J = 40.0 Hz), 

122.4, 111.7 (d, J = 100.0 Hz), 109.3, 28.7, 14.7; LRMS: 320.1; HRMS calculated M
+
 for 

C15H11F2N3OS: 319.0591; found: 319.0591. 
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6-(2-bromophenyl)-8-methyl-2-(methylthio)pyrido[2,3-d]pyrimidin-7(8H)-one (22e). 

Yield 83%; 
1
H-NMR (400 MHz, CDCl3): δ 8.63 (s, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.61 (s, 

1H), 7.29 – 7.40 (m, 2H), 7.21 – 7.28 (m, 1H), 3.80 (s, 3H), 2.64 (s, 3H); 
13

C-NMR (100 

MHz, CDCl3): δ 173.5, 161.8, 156.6, 154.5, 136.9, 135.0, 133.3, 133.1, 131.6, 130.2, 127.6, 

123.9, 109.5, 28.7, 14.8; LRMS: 364.0, 362.0; HRMS calculated M
+
 for C15H12BrN3OS: 

360.9884; found: 360.9876. 

 

Representative procedure for the preparation of 23a-e 

To a solution of 0.500 g (1.42 mmol) of 22a in 40 mL of chloroform, was added 

0.800 g (3.12 mmol) of 75% m-chloroperoxybenzoic acid. The solution was stirred at RT for 

6 h. After the completion of reaction, 2 mL of DMSO was added to the reaction mixture to 

neutralize unreacted m-chloroperoxybenzoic acid and it was further stirred for 15 minutes 

after which the reaction mixture was diluted with methylene chloride and washed with 

saturated NaHCO3, water and brine. The organic phase was dried over anhydrous MgSO4 

and concentrated. The crude was used for the next step without further purification. 

 

 

6-(2,6-dichlorophenyl)-8-methyl-2-(methylsulfonyl)pyrido[2,3-d]pyrimidin-7(8H)-one 

(23a). Yield 87%; 
1
H-NMR (300 MHz, CDCl3): δ 9.03 (s, 1H), 7.78 (s, 1H), 7.42 – 7.48 (m, 

2H), 7.31 – 7.38 (m, 1H), 3.91 (s, 3H), 3.44 (s, 3H); 
13

C-NMR (100 MHz, CDCl3): δ 165.0, 

160.5, 157.5, 155.5, 135.2, 135.0, 134.7, 132.9, 131.0, 128.4, 115.0, 39.5, 29.5; LRMS: 

352.0, 200.0, 154.1; HRMS calculated M
+
 for C15H11Cl2N3O3S: 383.9971; found: 383.9970 
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6-(2-chlorophenyl)-8-methyl-2-(methylsulfonyl)pyrido[2,3-d]pyrimidin-7(8H)-one (23b). 

Yield 85%; 
1
H-NMR (400 MHz, CDCl3): δ 9.00 (s, 1H), 7.82 (s, 1H), 7.47 – 7.53 (m, 1H), 

7.33 – 7.43 (m, 3H), 3.89 (s, 3H), 3.43 (s, 3H); 
13

C-NMR (100 MHz, CDCl3): δ 164.6, 161.2, 

157.3, 155.2, 136.6, 133.8, 133.7, 133.5, 131.3, 130.7, 130.1, 127.1, 115.1, 39.4, 29.4; 

LRMS: 452.3, 411.1, 391.3, 350.0, 331.1, 302.1, 268.1, 249.1, 215.1; HRMS calculated M
+
 

for C15H12ClN3O3S: 349.0310; found: 349.0299. 

 

 

8-methyl-2-(methylsulfonyl)-6-phenylpyrido[2,3-d]pyrimidin-7(8H)-one (23c).  

Yield 65%; 
1
H-NMR (400 MHz, CDCl3): δ 8.99 (s, 1H), 7.85 (s, 1H), 7.64 – 7.71 (m, 2H), 

7.42 – 7.49 (m, 3H), 3.88 (s, 3H), 3.41 (s, 3H); 
13

C-NMR (100 MHz, CDCl3): δ 164.2, 162.0, 

157.0, 154.7, 137.7, 134.7, 131.2, 129.8, 129.1, 128.7, 115.7, 39.5, 29.4; LRMS: 318.0; 

HRMS calculated M
+
 for C15H13N3O3S: 317.0390; found: 317.0396. 

 

 

6-(2,6-difluorophenyl)-8-methyl-2-(methylsulfonyl)pyrido[2,3-d]pyrimidin-7(8H)-one 

(23d). Yield 82%; 
1
H-NMR (400 MHz, CDCl3): δ 9.02 (s, 1H), 7.90 (s, 1H), 7.37 – 7.47 (m, 

1H), 7.03 (t, J = 8.0 Hz, 2H), 3.89 (s, 3H), 3.42 (s, 3H); 
13

C-NMR (100 MHz, CDCl3): δ 

164.9, 161.9 (d, J = 28.0 Hz), 160.6, 159.4 (d, J = 28.0 Hz), 157.5, 155.4, 135.7, 131.4 (t, J = 

40.0 Hz), 127.8, 114.9, 111.9 (d, J = 100.0 Hz), 39.5, 29.5; LRMS: 413.1, 352.0, 333.1, 
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304.1, 251.1, 209.2, 121.0; HRMS calculated M
+
 for C15H11F2N3O3S: 351.0489; found: 

351.0491. 

 

 

6-(2-bromophenyl)-8-methyl-2-(methylsulfonyl)pyrido[2,3-d]pyrimidin-7(8H)-one (23e). 

Yield 84%; 
1
H-NMR (400 MHz, CDCl3): δ 9.00 (s, 1H), 7.79 (s, 1H), 7.70 (d, J = 8.0 Hz, 

1H), 7.42 (t, J = 8 Hz, 1H), 7.29 – 7.36 (m, 2H), 3.90 (s, 3H), 3.43 (s, 1H); 
13

C-NMR (100 

MHz, CDCl3): δ 164.7, 161.2, 157.3, 155.3, 138.3, 135.8, 133.7, 133.3, 131.2, 130.9, 127.8, 

123.4, 115.2, 39.5, 29.5; LRMS: 457.0, 396.0, 348.0, 254.1, 215.1; HRMS calculated M
+
 for 

C15H12BrN3O3S: 392.9783; found: 392.9792. 

 

Representative procedure for the preparation of 24a-f 

A stirred mixture of 0.135 g (0.352 mmol) of sulfone 23a and 0.086 g (0.704 mmol) of 3-

aminobenzylamine in DMF (5 mL) was refluxed overnight. The resultant reaction mixture 

was cooled to RT and diluted with water. This aqueous solution was extracted with ethyl 

acetate (3x 15 mL). The ethyl acetate layer was subjected to water wash (2x10 mL) and brine 

wash followed by drying over anhydrous MgSO4 and concentrated in vacuo to give the crude 

product which was chromatographed over silica gel using 2% MeOH in CH2Cl2 to give 0.091 

g (61%) of pure 24a. 

 

 

2-(3-aminobenzylamino)-6-(2,6-dichlorophenyl)-8-methylpyrido[2,3-d]pyrimidin-7(8H)-

one (24a). Yield 61%; 
1
H-NMR (400 MHz, CDCl3): δ 8.27 (bs, 1H), 7.44 (s, IH), 7.40 (d, J 

= 8.0 Hz, 2H), 7.25 (t, J = 8.0 Hz, 1H), 7.14 (t, J = 8.0 Hz, 1H), 6.61 – 6.78 (m, 3H), 4.64 (d, 
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J = 5.2 Hz, 2H), 3.72 (s, 3H); 
13

C-NMR (100 MHz, CDCl3): δ 161.67, 161.19, 158.67, 

156.22, 147.00, 139.75, 136.71, 135.94, 134.55, 129.87, 129.79, 128.12, 120.27, 119.82, 

118.58, 118.09, 114.42, 114.32, 113.83, 46.05, 28.33; LRMS: 427.1, 425.1, 392.1, 390.1, 

287.1, 285.1, 106.1; HRMS calculated M
+
 for C21H17Cl2N5O: 452.0810; found: 425.0813. 

 

 

2-(3-aminobenzylamino)-6-(2-chlorophenyl)-8-methylpyrido[2,3-d]pyrimidin-7(8H)-one 

(24b). Yield 77%; 
1
H-NMR (400 MHz, CDCl3): δ 8.32 (bs, 1H), 7.52 (s, IH), 7.47 (t, J = 4.0 

Hz, 1H), 7.30 – 7.36 (m, 3H), 7.14 (t, J = 8.0 Hz, 1H), 6.77 (d, J = 7.6 Hz, 1H), 6.70 (s, 1H), 

6.62 (d, J = 7.6 Hz, 1H), 4.64 (d, J = 5.2 Hz, 2H), 3.71 (s, 3H); 
13

C-NMR (100 MHz, 

CDCl3): δ 162.5, 161.6, 158.8, 156.1, 147.0, 140.0, 135.8, 135.5, 134.0, 131.9, 129.9, 129.6, 

129.5, 126.8, 118.0, 114.4, 114.2, 46.0, 28.4; LRMS: 391.1, 356.2, 251.1, 106.1, 69.0; 

HRMS calculated M
+
 for C21H18ClN5O: 391.1200; found: 391.1204. 

 

 

2-(3-aminobenzylamino)-8-methyl-6-phenylpyrido[2,3-d]pyrimidin-7(8H)-one (24c). 

Yield 53%; 
1
H-NMR (400 MHz, CDCl3): δ 8.20 (bs, 1H), 7.64 (d, J = 7.6 Hz, 2H), 7.55 (s, 

1H), 7.43 – 7.32 (m, 3H), 7.13 (t, J = 7.6 Hz, 1H), 6.77 – 6.59 (m, 3H), 4.62 (d, J = 5.2 Hz, 

2H), 3.71 (s, 3H); 
13

C-NMR (100 MHz, CDCl3): δ 163.1, 161.3, 158.6, 155.6, 147.0, 139.9, 

136.5, 133.7, 129.8, 129.6, 128.9, 128.4, 128.0, 120.4, 118.6, 118.0, 114.3, 46.0, 28.3; 

LRMS: 358.2, 357.2, 356.2, 252.1, 121.1, 106.1, 77.0; HRMS calculated M
+
 for C21H19N5O: 

357.1590; found: 357.1600. 
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2-(3-aminobenzylamino)-6-(2,6-difluorophenyl)-8-methylpyrido[2,3-d]pyrimidin-7(8H)-

one (24d). Yield 67%; 
1
H-NMR (400 MHz, CDCl3): δ 8.37 (bs, 1H), 7.59 (s, IH), 7.32 (dt, J 

= 7.4 Hz, J = 2.0 Hz, 1H), 7.14 (t, J = 7.6 Hz, 1H), 6.97 (t, J = 8.0 Hz, 2H), 6.76 (d, J = 7.2 

Hz, 1H), 6.69 (s, 1H), 6.61 (dd, J = 8.0 Hz, J = 2.0 Hz, 1H), 4.64 (d, J = 5.2 Hz, 2H), 3.71 (s, 

3H); 
13

C-NMR (100 MHz, CDCl3): δ 162.3, 162.0, 161.7, 161.2, 159.8, 159.0, 156.3, 147.0, 

139.8, 137.6, 129.9, 120.5, 119.9, 118.7, 118.0, 114.4, 111.7, 111.5, 105.6, 46.1, 28.5; 

LRMS: 394.1, 393.1, 392.1, 288.1, 269.1, 121.1, 106.1, 77.0, 69.0; HRMS calculated M
+
 for 

C21H17F2N5O: 393.1401; found: 393.1404. 

 

 

2-(3-aminobenzylamino)-6-(2-bromophenyl)-8-methylpyrido[2,3-d]pyrimidin-7(8H)-one 

(24e). Yield 48%; 
1
H-NMR (400 MHz, CDCl3): δ 8.18 (bs, 1H), 7.65 (d, J = 7.6 Hz, 1H), 

7.46 (bs, 1H), 7.37 – 7.32 (m, 2H), 7.26 – 7.20 (m, 2H), 7.13 (t, J = 7.6 Hz, 1H), 6.78 – 6.60 

(m, 3H), 4.62 (d, J = 5.2 Hz, 2H), 3.71 (s, 3H); 
13

C-NMR (100 MHz, CDCl3): δ 162.5, 161.6, 

161.3, 158.8, 156.1, 147.1, 139.9, 137.6, 135.8, 133.1, 131.9, 129.9, 129.7, 127.5, 124.3, 

120.4, 118.7, 118.1, 114.4, 46.1, 28.4; LRMS: 435, 358, 356, 252, 237, 179, 106, 77; HRMS 

calculated M
+
 for C21H18BrN5O: 435.06947; found: 435.07033. 
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6-(2,6-dichlorophenyl)-8-methyl-2-(3-(methylthio)benzylamino)pyrido[2,3-d]pyrimidin-

7(8H)-one (24f). Yield 64%; 
1
H-NMR (400 MHz, CDCl3): δ 8.19 (bs, 1H), 7.42 – 7.38 (m, 

3H), 7.27 – 7.22 (m, 3H), 7.18 – 7.16 (m, 2H), 6.84 (bs, 1H), 4.68 (d, J = 4.4 Hz, 2H), 3.71 

(s, 3H), 2.46 (s, 3H); 
13

C-NMR (100 MHz, CDCl3): δ 161.6, 158.9, 156.3, 139.4, 139.3, 

136.7, 136.6, 136.0, 134.6, 129.9, 129.4, 128.2, 126.0, 125.7, 124.6, 45.9, 28.4, 16.0; LRMS: 

457, 422, 295, 188; HRMS calculated M
+
 for C22H18Cl2N4OS: 456.05783; found: 456.05881. 

 

Representative procedure for the preparation of 20 and 25 

To a solution of sulfone 23a (0.187 g, 0.5 mmol) in freshly distilled diglyme (5 ml), 1,3-

phenylenediamine (0.120 g, 1.1 mmol) was added and resulting reaction mixture was 

refluxed for 12 h. After the completion of reaction, most of the solvent was evaporated 

invacuo and residue was purified by preparative TLC to get amine 9a (0.110 g, 55%). 

 

 

6-(2,6-dichlorophenyl)-8-methyl-2-(3-(methylthio)phenylamino)pyrido[2,3-d]pyrimidin-

7(8H)-one (20). Yield 57%; 
1
H-NMR (400 MHz, CDCl3): δ 8.60 (s, 1H), 7.75 (bs, 1H), 7.54 

– 7.52 (m, 2H), 7.42 – 7.38 (m, 3H), 7.33 – 7.25 (m, 2H), 7.01 (d, J = 8.0 Hz, 1H), 3.82 (s, 

3H), 2.53 (s, 3H); LRMS: 442, 407, 362, 313, 269, 203, 196, 180; HRMS calculated M
+
 for 

C21H16Cl2N4OS: 442.04219; found: 442.04315. 

 

 

2-(3-aminophenylamino)-6-(2,6-dichlorophenyl)-8-methylpyrido[2,3-d]pyrimidin-7(8H)-

one (25). Yield 55%; 
1
H-NMR (400 MHz, CDCl3): δ 8.58 (s, 1H), 7.53 (s, 1H), 7.46 – 7.40 

(m, 3H), 7.28 – 7.25 (m, 1H), 7.23 – 7.11 (m, 2H), 7.07 – 6.98 (bs, 1H), 6.48 (d, J = 8.0 Hz, 
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1H), 3.81 (s, 3H); 
13

C-NMR (100 MHz, CDCl3): δ 161.6, 159.3, 159.2, 158.6, 156.1, 147.4, 

139.8, 136.5, 136.5, 136.4, 136.4, 135.9, 134.4, 130.1, 128.2, 126.3, 110.7, 110.3, 106.8, 

106.5, 28.8; LRMS: 412, 377, 376, 284, 242; HRMS calculated M
+
 for C20H15Cl2N5O: 

411.06536; found: 411.06606. 

 

Representative procedure for tagging PDC-Gly (26) with Cy dyes 

 

 

 

Preparation of Cy3-PDC-Gly (39) - In a 20 ml vial equipped with a stirring bar, Cy3-NHS 

ester (28b) (30.0 mg, 43.0 μmol), PDC-Gly (26) (25.0 mg, 52.0 μmol) and N,N-

diisopropylethylamine (0.1 ml) were taken in DMF (5.0 ml) and stirred at room temperature 

under argon atmosphere in dark for 12 h. After the completion of reaction, the reaction 

mixture was purified by preparative TLC using 10% MeOH:DCM to give the pure product 

39 in 72% yield. MS (m/z): 923.3910 (M
+
 + 1), 471.2992; HRMS: calcd for C53H57Cl2N8O3

+
: 

923.3931, found: 923.3915. 
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Preparation of Cy5-PDC-Gly (40) - In a 20 ml vial equipped with a stirring bar, Cy5-NHS 

ester (29b) (50.0 mg, 71.0 μmol), PDC-Gly (34.0 mg, 71.0 μmol) and N,N-

diisopropylethylamine (0.5 ml) were taken in DMF (5.0 ml) and stirred at room temperature 

under argon atmosphere in dark for 12 h. After the completion of reaction, the reaction 

mixture was purified by preparative TLC using 10% MeOH:DCM to give the pure product 

40 in 66% yield. MS (m/z): 947.5 (M
+
 - 1), 497.4, 383.3. 

 

Representative procedure for the preparation of symmetrical Cy3 macrocycles 

Symmetrical Cy3-NHS ester (41b) (0.2 g, 0.24 mmol) was taken in an oven dried 100 

ml round bottom flask equipped with a stir bar. To this, 5 ml of dry DMF was added 

followed by the addition of 1,6-hexanediamine (0.03 g, 0.24 mmol) and diisopropylamine 

(0.06 g, 0.48 mmol) at room temperature under argon. Resulting reaction mixture was stirred 

for six hours with monitoring. After the completion of reaction, majority of DMF was 

removed under reduced pressure and residue was purified by column chromatography using 

1% MeOH:DCM as elutent to obtain pure macrocycle 42 (0.114 g, 0.16 mmol) in 66% 

isolated yield.  
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(31aZ,33E)-31,31,35,35-tetramethyl-11,20-dioxo-6,7,8,9,10,11,12,13,14,15,16,17,18,19, 

20,21,22,23,24,25,31,35-docosahydro-[1,7,14,21]tetraazacycloheptacosino[1,2-a:7,6-

a']diindol-5-ium bromide (42). Yield 66%; 
1
H-NMR (400 MHz, CDCl3): δ 8.42 (t, J = 13.4 

Hz, 1H), 7.91 (t, J = 4.8 Hz, 1H), 7.33 – 7.44 (m, 4H), 7.22 – 7.30 (m, 2H), 7.13 – 7.20 (m, 

2H), 7.10 (d, J = 8.0 Hz, 1H), 4.15 (t, J = 8.0 Hz, 4H), 3.28 (d, J = 4.0 Hz, 4H), 2.68 (s, 3H), 

2.42 (t, J = 8.0 Hz, 3H), 1.75 – 1.97 (m, 7H), 1.72 (s, 12H), 1.55 – 1.65 (m, 7H), 1.40 – 1.50 

(m, 3H), 1.20 – 1.37 (m, 3H); 
13

C-NMR (100 MHz, CDCl3): δ 174.8, 174.0, 172.7, 151.3, 

142.1, 140.9, 129.3, 125.7, 122.4, 111.3, 104.6, 49.3, 44.9, 38.8, 36.6, 28.5, 27.3, 26.6, 26.5, 

25.8, 25.7, 25.6; LRMS: 637.45, 423.03, 339.07, 277.10; HRMS calculated M
+
 for 

C41H57N4O2: 637.4482; found: 637.4480. 
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CHAPTER 3. New methodology towards the synthesis of flavones, 

flavonols and aurones 

 

Introduction 

Flavonoids are polyphenolic compounds that are ubiquitous in nature and categorized 

according to chemical structure into nine major subgroups: flavonols, flavones, flavanones, 

isoflavones, aurones, flavanediols, anthocyanidins, chalcones and tannins (Figure 1).
1
 They 

are synthesized exclusively in plants and many of them possess various biological functions 

such as acting as floral pigments, signal molecules and antimicrobial compounds.
2
 They 

occur in the plants as glycosides, meaning that they are bound to sugar molecules. Plants 

accumulate specific flavonoids and thus each species often exhibits a limited flower color 

range. For example, anthocyanidin based delphinidin imparts violet to blue color and 

cyanidin gives red to magenta color to their corresponding flowers.
3
  

 

 

Figure 1: General structures of flavonoids 

 

The flavonoids have aroused considerable interest recently because of their potential 

beneficial effects on human health. They have been reported to have antiviral
4
, anti-allergic

5
, 

antiplatelet
6
, anti-inflammatory

8
, antitumor

8
, antioxidant

4,7
 and estrogenic

9
 activities. Over 
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5,000 flavonoids have been identified but their applications have been hampered because 

they usually exist as a mixture of multiple compounds that are difficult to separate or their 

activities are not satisfactory.
10

 

Structurally, they consist of two aromatic rings linked by a three-carbon chain that 

forms an oxygenated heterocyclic ring (Figure 1). Flavonols are the most widespread 

flavonoids in plants. Some well known flavonols are quercetin and kaempferol. Flavonols 

can be found in many common foods such as onions, leeks, broccoli, red grapes, apples and 

blue berries. Flavones, such as luteolin and apigenin, are less common and can be found in 

green vegetables such as celery and parsley. Flavanones are mainly found in citrus fruits, in 

the juice but also the albedo. Isoflavones are also called plant estrogens because of their 

structural similarity to human estrogen. They are mainly found in soybeans. Anthocyanins, as 

mentioned above, are the water-soluble pigments which give the typical color to fruits and 

vegetables such as blueberries, strawberries, red wines and cabbages. 

The bioavailability and metabolism of flavonoids are an important factor in 

determining their therapeutic effect. Some flavonoids such us anthocyanins are easily 

absorbed in the stomach, whereas most other flavonoids are only absorbed in the intestine. 

Enzymes released by the intestinal epithelium or by intestinal bacteria may change the 

chemical structure of flavonoids. Their metabolites are finally excreted in the bile or urine.
11

  

It is very difficult to estimate the total consumption of flavonoids because their 

content in foods has shown large variations. Most food consumption tables do not show data 

about flavonoids or other phytochemicals. However, the USDA website has comprehensive 

tables of flavonoids, proanthocyanidins and isoflavones of many foods. It is estimated that 

Americans consume daily about one gram of polyphenols, most of which is coming from tea, 

red wine, fruits, cacao, vegetables and legumes. The intake of individual flavonoids shows a 

large differences between different population groups. For example, Japanese adults consume 

about twenty five times more isoflavones that Western adults.
11

 

Because many foods are rich in flavonoids, they are generally recognized as safe and 

are well known for their health benefits. But they may also have adverse effects, such as 

antinutritional effects, thyroid toxicity, carcinogenic, development effects and drug 

interaction. Very high intakes of flavonoids have been associated with antinutritional effects, 
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such as a reduced intake of glucose or minerals. However, the slower absorption of glucose 

may have some use against diabetes mellitus. Some flavonoids have an effect on the thyroid 

function. They inhibit thyroid peroxidase and interfere with the production of the thyroid 

hormone. Soy isoflavones can, in theory, increase the risk of thyroid, cancer but some studies 

have shown that the intake of isoflavones actually decrease the risk of thyroid cancer. There 

were early reports that the intake of high quantities of isoflavones (from red clover) and 

coumestrol by cattle and sheep caused infertility, such effects have not been observed in 

primates. Epidemiological studies show no effect of isoflavones on fertility, miscarriage, 

abortion or ectopic pregnancy. Epidemiological studies and scientific experiments suggest a 

protective function of flavonoids against cardiovascular diseases. The effects of tea and red 

wine on cardiovascular disease have been studied intensively. It is estimated that the extra 

daily consumption of three cups of tea reduces the risk of cardiovascular risk by more than 

ten percent.
11

  

Epidemiological studies also show a relationship between red wine intake and a 

cardiovascular protective effect. Flavonoids act by inhibiting the initiation and progression of 

atherosclerosis. The high intake of flavonoids by the French explains the French paradox, 

which refers to the observation that the French have lower rates of heart attacks despite the 

fact that they consume a high amount of saturated fats.
11

 

The effects of flavonols, flavones and flavanones have been investigated in some 

large community health studies. Most studies show a protective effect for these 

phytochemicals. However, one English study showed an inverse relationship between intake 

of flavonols and flavones on cardiovascular. This could be attributed to the fact that the 

English consume tea with large quantities of milk, which might inhibit the absorption of 

flavonoids. More studies are required to prove the clinical effect of these flavonoids. 

Isoflavones form another group of well studied flavonoids. They can bind selectively with 

estrogen receptors (alpha- and beta-).
11

  

Animal experiments and epidemiological studies have suggested that isoflavones 

protect against cardiovascular diseases such as atherosclerosis. They seem to directly 

improve the health of blood vessels. Isoflavones help to reduce LDL oxidation through their 

antioxidant activity. Anthocyanidins, the phytochemicals which gives many fruits their red or 
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purple color, have many claimed health benefits such as antioxidant, anti-inflammatory, 

antimicrobial, anticarcinogenic activities, neuroprotective effects, induction of apoptosis and 

improvement of vision. Many in vitro studies have demonstrated the antioxidant effects of 

anthocyanins but the in vivo effects are less evident because of the low absorption.
11

  

 

 

Scheme 1: General outline of common synthetic pathways of flavones. 

 

Though flavonoids consist of nine major subgroups, we focused our attention to the 

families of flavones (1) and flavonols (4) for the synthesis. Both flavones and flavonols are 

structurally very close. The only difference is the presence of a hydroxyl group at the 3-

position in flavonols (Figure 1). For this reason, flavonols are also known as 3-

hydroxyflavones. There have been many publications outlining different synthesis of 

flavones but a majority of these methods falls into the category of either oxidative cyclization 

of various substituted 2‟-hydroxychalcones (2) or cyclodehydration of substituted 1-(2-

hydroxyphenyl)-3-phenylpropane-1,3-dione (3, Scheme 1). 
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Scheme 2: Oxidative cyclization pathway to prepare flavones 

 

The preparation of 2‟-hydroxychalcone (2) for oxidative cyclization is usually carried 

out by condensing an appropriately substituted 2‟-hydroxyacetophenone with various 

substituted benzaldehydes under basic conditions.
12

 There have been several reports using 

various oxidative cyclization conditions and the most common of them are summarized in 

Scheme 2. In one of the earliest reported works on the synthesis of flavones, Doshi et al. 

reported the cyclization of 2‟-hydroxychromone (2) in presence of catalytic amount of iodine 

in boiling dimethylsulfoxide (Scheme 2, route 1).
13

 This catalytic iodine mediated method 

has been further explored and modified into a greener method by the use of iodine adsorbed 

on neutral alumina
14

 and microwave reactor assisted conditions
15

. 

Another often used method for the oxidative cyclization involves using selenium 

dioxide in isoamyl alcohol which requires prolonged heating.
16a

 This, selenium dioxide 

mediated reaction, has also been improved over the years in order to make it more benign. 

The most common improvement of this method is the use of selenium dioxide and traces of 
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dimethylsulfoxide over silica gel under microwave assisted conditions (Scheme 2, route 

2).
16b

 

Another very common pathway to flavones (1) from 2‟-hydroxychromones (2) is the 

addition of bromine across the chromone double bond followed by base mediated cyclization 

(Scheme 2, route 3).
17a

 Though, this method does not involve the use of high temperature or 

toxic reagents like dimethylsulfoxide. The one major disadvantage is the yields for the 

flavones (1) are moderate at best because of the formation of aurone (Figure 1) side 

products.
17b-c

 

Cook and coworkers demonstrated an interesting and flexible synthesis of flavones 

(1) using a Wacker-Cook oxidation as the key step. They prepared the chalcone (2) starting 

material using a common base mediated condensation of 2‟-hydroxyacetophenone and 

benzaldehyde. Their initial attempts using original Wacker conditions resulted in very poor 

conversions of chalcone to flavones (1). Moreover, Wacker conditions required the use of 

stoichiometric amounts of palladium. They improved this method by using excess tert-butyl 

hydroperoxide. This method needed only catalytic amounts of the palladium catalyst and 

moderately high temperatures (Scheme 2, route 4). Using this modified route, they made 

several substituted flavones (1) in good yields.
18

 

Another very common way to prepare flavones (2) and flavonols (4) is 

cyclodehydration of substituted 1-(2-hydroxyphenyl)-3-phenylpropane-1,3-dione (3, Scheme 

1). The starting material 3 is usually prepared by a Baker-Venkataraman type rearrangement, 

which involves base induced transfer of the ester acyl group in an O-acylated phenol ester, 

which leads to a 1,3-diketone (Scheme 1). Like oxidative cyclization, the cyclodehydration 

pathway has also been very extensively used; studeies have modified it as shown by the 

examples below in Scheme 3. 

 

 

Scheme 3: Preparation of flavones via cyclodehydration pathway 
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Wilson Baker first showed the usefulness of 1,3-diketone 3 in the synthesis of 

flavones when an unsubstituted 3 was converted to a flavone using sodium acetate in acetic 

acid conditions (Scheme 3).
19

 Venkataraman and coworkers successfully attempted the same 

reaction under acidic conditions (Scheme 3).
20

 Many different acidic and basic conditions 

have been tried and reported since then. The use of hydrochloric acid in acetic acid
21

, 

hydrobromic acid in acetic acid
22

, para-toluenesulfonic acid in xylene
23

 and Lewis acids
24

 

has been reported. 

Some more cyclodehydration pathways are discussed in Scheme 4. Most of these 

routes use microwave conditions as a way to make the synthesis more environmentally 

friendly. Kabalka and coworkers reported a high yielding synthesis of flavones and 

chromones by using a catalytic amount of cupric chloride in a solution of the appropriate 1,3-

diketone 3 in ethanol under microwave conditions (Scheme 4, route 1).
25

 

A solid-state synthesis, using high-speed ball milling (HSBM) was reported by Su 

and coworkers. Their route was an efficient, mechanically activated solid-state synthesis 

which used potassium bisulfate as a reagent to achieve the transformation. This route had the 

distinct advantage that it does not use strong acids like sulfuric acid, hydrochloric acid or 

hydrobromic acid for the synthesis. Moreover, this route was flexible, high yielding and 

environmentally benign, thus making it an attractive option to other routes (Scheme 4, route 

2).
26
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Scheme 4: Preparation of flavones via cyclodehydration pathway 

 

The first use of popular Vilsmeier-Haack reaction for the synthesis of flavones was 

reported by Su and coworkers. They used Vilsmeier-Haack conditions with bis-

(trichloromethyl)carbonate/ N,N-dimethylformamide to cyclodehydrate the 1,3-diketone 3 to 

flavone 1 (Scheme 4, route 3).
27

 Many other research groups reported the use of various 

catalysts like gallium(III) triflate
28

, indium(III) chloride
29

 and ionic liquids
30

 to achieve the 

cyclodehydration step in order to synthesize flavones efficiently (Scheme 4, route 4).  

 

 

Scheme 5: Synthesis of flavone (1) 

 

Another common method for the synthesis of flavones is detailed above in Scheme 5. 

This approach flavones involves the coupling of substituted phenol 5 with acetylene 6 to 
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generate aryl propynoate 7 which, on irradiation, undergoes Photo-Fries rearrangement to 

give ortho-hydroxyaryl ethynyl ketone 8. This ketone 8 can then be cyclized to the 

corresponding flavone in 10-25% overall yield.
31

 

 

 

Scheme 6: Conversion of flavones to flavonols 

 

Flavones 1 are usually converted to flavonols 4 by either of the methods shown in 

Scheme 6. In a method developed by Dean and coworkers, the 3-position of flavones are 

lithiated by LDA and then the 3-lithioflavone is reacted with methyl borate followed by 

hydrogen peroxide to give flavonols 4 in good yields.
32

 The second common method to carry 

out the conversion is to oxidize the flavone 1 with dimethyldioxirane, followed by the 

treatment with a catalytic of para-toluenesulfonic acid to give the flavonols in decent 

yields.
33

 

 

Results and Discussion 

 

 

Scheme 7: Reterosynthetic analysis of flavonols 

 

Our initial approach to develop a general synthesis of flavonols 4 is outlined above in 

Scheme 7. Our key step in this plan was the dehydrocyclization of arylketoester 11 to the 

flavonols 4 by using P4-t-Bu chemistry developed previously. This arylketoester 11 could be 

prepared in a two step sequence starting from commercially available 3,4,5-trimethoxyphenol 
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9. Phenol 9 can be converted to ortho-hydroxy arylketoester 10 via a Friedel-Crafts acylation 

with ethyl oxalyl monochloride followed by a base mediated O-arylation with the appropriate 

benzyl bromide. 

 

 

Scheme 8: Synthesis of flavonols – model studies 

 

We first decided to try our key step on a model system. Trimethoxy phenol 9 was 

acylated by using ethyl oxalyl monochloride under aluminum trichloride mediated Friedel-

Crafts conditions to give acylated phenol 10 in 80% yield. Compound 10 was then O-

arylated with benzyl bromide using sodium hydride as the base to give compound 11 in 73% 

yield. This key intermediate 11 was then reacted with P4-t-Bu in boiling benzene. The 

benzylic anion generated could potentially give rise to two products. The first possibility was 

an attack on the ester carbon to give flavonol 4. Potentially it could also attack on the 

carbonyl carbon to give a 2,3-disubstituted benzofuran. Unfortunately, even after prolonged 

heating, we just recovered the starting material (Scheme 8). 
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Scheme 9: New approach 

 

With the failure of our initial plan, we decided to modify compound 11 in such a way 

as to facilitate the anion formation at the benzylic position. For this purpose, we envisioned 

an electron-withdrawing group which could be removed easily at a later stage. A cyano 

group at the benzylic position seemed to fit the requirements perfectly thus giving rise to 

cyano compound 12a shown in Scheme 9. 

 

 

Scheme 10: Synthesis of compound 12a 

 

The synthesis of compound 12a is shown in Scheme 10. Compound 13a was prepared 

by the benzylic bromination of phenylacetonitrile 14a in 66% yield. This alpha-bromo 

compound 13a was reacted with phenol 10 under basic conditions to give cyano compound 

12a in 70% yield. 

 

 

Scheme 11: Synthesis of flavonols - model studies 
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With compound 12a in hand, we moved ahead and subjected it to a potassium tert-

butoxide mediated intramolecular cyclization. At 0 
o
C or room temperature, the starting 

material remained unaffected, but at elevated temperatures it decomposed (Scheme 11). This 

led us to change the base to LDA. Compound 12a was reacted at 0 
o
C in the presence of 

LDA but instead of generation of the flavone, the intramolecular cyclization resulted into the 

formation of dihydro benzofuran type compound (15, Scheme 11). We then subjected this 

compound 15 to potassium hydride conditions in boiling tetrahydrofuran, hoping that it 

would rearrange into six-membered ring, but we ended up recovering compound 15.  

 

 

Scheme 12: Reduction of keto ester to alpha-hydroxy ester 

 

This experiment, though a failure, made us realize that in compounds like 12a, the 

carbonyl carbon is more reactive than the ester. With this crucial information in hand, we 

designed a new strategy where we reduced the ketone group of compound 12a under sodium 

borohydride mediated conditions to give alpha-hydroxy ester 16a in 83% yield (Scheme 12). 

 

 

Scheme 13: Synthesis of flavonols – model studies 
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This alpha-hydroxy ester 16a was then subjected to various basic conditions. 

Reaction with potassium tert-butoxide was unsuccessful even at elevated temperatures and 

resulted into the decomposition of the starting material (Scheme 13). Interesting results were 

observed when ester 16a underwent an LDA mediated cyclization reaction. At lower 

temperatures, 16a remained unaffected but when the temperature was increased to reflux, a 

new compound was formed. This compound was not the one which we were expecting to 

get. In fact, the intramolecular cyclization of compound 16a eliminated the cyano group and 

rearranged it into the flavonol 4a (Scheme 13). The analytical data of flavonols 4a was found 

to be in excellent agreement with literature data.
34a-b

 

 

 

Scheme 14: Synthesis of 3,5,6,7-tetramethoxyflavone 

 

Tetramethoxy flavone 4b is a naturally occurring flavonol found in Gomphrena 

martiana
35

 and shows antimicobacterial
36a-b

, antitumoral
36b

 and antifungal activities
37

. This 

3,5,6,7-tetramethoxyflavone was successfully synthesized by methylating trimethoxyflavonol 

4a under basic conditions (Scheme 14). The analytical data for flavonol 4b matched with the 

reported data.
38

 

 

 

Figure 2: Flavonol based natural products 
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With the successful synthesis of one of the natural flavonols 4b, we decided to target 

some other naturally occurring flavonols, to further explore and develop our synthetic 

method. Some of the flavonols could directly be synthesized from our method are shown in 

Figure 2. 

 

 

Scheme 15: Synthesis of flavonols 

 

The synthesis started with benzylic bromination of  commercially available (3,4-

dimethoxy)phenylacetonitrile 14b and 3,4-(methylenedioxy)phenylacetonitrile 14c to give 

alpha bromo compounds 13b and 13c in 62% and 65% yields, respectively. Compounds 

13b-c were then coupled with ortho-hydroxy compound 10 under basic conditions to give O-

arylated compounds 12b-c in good yields. Reduction of ketoesters 12b-c using sodium 

borohydride gave key intermediates 16b-c in 75% and 79% yields, respectively. At that 

stage, we were set to try our crucial dehydocyclization – rearrangement to give the 

corresponding flavonols.  Unfortunately, even after repeated attempts, we were unable to get 

the required products. Changing the base to Li-TMP did not help, as we just recovered some 

of the starting material (Scheme 15). 
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Scheme 16: New approach 

 

These unfortunate results forced us to abandon a really elegant synthetic pathway and 

start afresh.  Our next plan is outlined above in Scheme 16. We envisioned the final step to 

be an intramolecular Friedel-Crafts type acylation to close the ring to generate the flavonol 4 

from key intermediated 17. Our plan was to make compound 17 via an anionic reaction of 

compound 18 with dimethyl oxalate. 

 

 

Scheme 17: Attempted synthesis of 17 

 

Synthetic efforts based on this new approach are shown in Scheme 17. We started 

with trimethoxyphenol 9 and reacted it with various substituted benzyl bromide compounds 

19a-d to get O-arylated compounds 18a-d in 73 - 88% yields. Next, we tried a number of 

conditions to react 18a-d with dimethyl oxalate (Scheme 17, Table 1). Various bases were 
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tried but none of the conditions gave us the expected product. This unsuccessful endeavor led 

us to think further and design a completely new synthetic approach. 

 

 

Scheme 18: New plan 

 

Our next plan is outlined above in Scheme 18. We postulated that in a benzofuran-

2,3-dione 19 type system, due to the presence of methoxy groups at the ortho and para 

postion of the benzene, the carbonyl group at 3-position, the other carbon at 2-position would 

be more reactive and could be attacked by an appropriate nucleophile 20. We foresaw 

compounds like phenylacetonitrile, benzyl chloride and its triphenylphosphonium salt as 

potentially useful nuclephiles because theanion can be generated on the benzylic position 

which would attack the 2-position of benzofuran 19 followed by a furan ring opening. The 

phenoxide anion could attack the benzylic position bearing cyano, chloro or 

triphenylphosphonium group, which are good leaving groups, and result in the ring closing 

required to give required flavonols 4. 
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Scheme 19: Synthesis of flavonols – model studies 

 

Benzofuran-2,3-diketone 19 was synthesized by following a literature procedure of 

condensing trimethoxyphenol 9 with oxalyl chloride at 100 
o
C under neat conditions in 78% 

yield.
39

 Next, we tried a number of conditions with either benzyl chloride or 

phenylacetonitrile. Various bases like sodium hydride, potassium tert-butoxide, LDA and Li-

TMP were used, but all the reactions were unsuccessful resulting in either the recovery of 

starting material 19 or decomposition at elevated temperatures (Scheme 19, Table 2). 

 

 

Scheme 20: Synthesis of flavonols – model studies 

 

A breakthrough was achieved when we used benzyl triphenylphosphonium bromide 

20a as a nucleophile under potassium tert-butoxide conditions. We recovered a couple of 

new products which were different from both the starting materials based on thin layer 

chromatography analysis as well as analytical data. It turned out that none of them were the 

expected flavonol, instead, they were found to be aurone 21a and isoaurone 22a. Even after 
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trying different bases like LDA and n-butyllithium, we just recovered aurone and isoaurone 

in various ratios and better yields (Scheme 20, Table 3). This was confirmed by comparing 

the analytical data with literature data.
39

 

Though, it was definitely a major setback to our synthetic plans, but we decided to 

turn this into an opportunity by designing two different pathways stemming from aurone 21a. 

In the first pathway, we decided to convert the double bond of aurone 21a into epoxide 24. 

Our plan was to subject this epoxide to various acidic or basic conditions to hopefully 

rearrange it into the flavonol 4a. Another idea based on Auwers synthesis 
40a, b

 was planned, 

where bromine was added across the double bond to give dibromo compound 23. Dibromo 

23 then can be subjected to basic conditions to rearrange into flavonol 4a. Scheme 21 

outlines our approach to both of the pathways. Attempts to convert the aurone 21a into its 

epoxide were unsuccessful with both hydrogen peroxide as well as dimethyldioxirane 

conditions, thus bringing an end to this pathway. The second pathway based on Auwers 

synthesis successfully gave the product 23a in 88% yield. It turned out that compound 23a 

was actually a tribromide compound as the phenyl ring also underwent bromination to give 

the unexpected product. Unfortunately, even after repeated attempts, compound 23a 

produced a complex mixture when it was subjected to potassium hydroxide conditions 

(Scheme 21). 

 

 

Scheme 21: Synthesis of flavonols – model studies 
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After trying many unsuccessful strategies, we decided to completely overhaul the 

plan and approach the synthesis of flavonols 4 via flavones 1. As described above in Scheme 

5, flavones can easily be converted into flavonols using various strategies. Since there are 

many different and efficient strategies available for the synthesis of flavones, we wanted to 

come up with a strategy which is different and yet more efficient than others. There was one 

common drawback in all the previously published strategies, that is, it is not possible to 

generate libraries of flavones efficiently as for every new substitution, one has to go back to 

the starting point and begin afresh. We decided to design a strategy which would overcome 

this point of contention and would be useful in making libraries of flavones more efficiently.  

 

 

Scheme 22: New plan – reterosynthetic analysis 

 

Our new synthetic plan is shown in Scheme 22. This strategy was based on an 

entirely new reterosynthetic approach. The key step in this new method is palladium 

mediated Suzuki coupling of chromone 30a with various substituted phenylboronic acids 31 

to prepare flavones. The plan was to prepare chromone 30a from ortho-acylated phenol 29a. 

The acylated phenol 29a could be prepared from trimethoxyphenol 9a and dibromoacrylate 

27a, which in turn could be synthesized from commercially available tetrabromoacetone 25. 

The obvious advantage of this route is that few permutations and combinations of key 
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intermediates would result in large number of substituted flavones which could then be used 

for drug screening purposes. 

 

 

Scheme 23: Synthesis 

 

The synthesis started from commercially available tetrabromoacetone 25 which was 

subjected to Favorskii type rearrangement in the presence of aqueous sodium bicarbonate to 

give 3,3-dibromoacrylic acid 26a in 63% yield.
41

 This dibromoacrylate 26a was then 

converted into its corresponding acid chloride 27a by boiling it in thionyl chloride. This 

acrylate 27a was then used for Fridel-Crafts acylation of trimethoxyphenol 9a. Various 

different conditions were tried but the reactions were mostly unsuccessful. Refluxing with 

titanium tetrachloride in 1,2-dichloroethane returned mostly starting material (Scheme 23, 

Table 4 – entry 1). Neat conditions with titanium tetrachloride were unsuccessful but 

produced less than 5% of product with boron trifluoride etherate (Scheme 23, Table 4 – entry 
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2, 3). Even the use of aluminum trichloride was unsuccessful (Scheme 23, Table 4 – entry 4, 

5). At this stage we changed the route and tried Steglich esterification conditions on 3,3-

dibromoacrylic acid 26a and phenol 9a to give ester 28a in 71% yield. This ester 28a was 

then subjected to Fries rearrangement conditions using various Lewis acids (Scheme 23, 

Table 5). Initial attempts using titanium tetrachloride, boron trifluoride etherate and 

photochemical conditions did not result in the expected product (Scheme 23, Table 5 – entry 

1-3). When aluminum trichloride was used in boiling chloroform, a small amount of product 

was obtained (Scheme 23, Table 5 – entry 4). This positive result was standardized by using 

higher boiling 1,2-dichloroethane as a solvent which gave 41% of rearranged product 29a 

(Scheme 23, Table 5 – entry 5). Even after repeated attempts and prolonged heating, we were 

unable to produce better yields. Usually, the demethylated ester would be recovered along 

with the expected product which accounts for the loss of yield. 

 

 

Scheme 24: Synthesis of flavones – model studies 

 

After the successful Fries rearrangement to give compound 29a, it was subjected to 

various basic conditions resulting in the formation of compound 30a in good yields (Scheme 

24, Table 6 – entry 1-3). This compound 30a, which we thought was a chromone derivative, 

was subjected to Suzuki coupling conditions with phenylboronic acid 31a in the presence of 

tetrakis(triphenylphosphine)palladium and anhydrous potassium bicarbonate in refluxing 1,4-

dioxane. This Suzuki reaction gave us a new product whose analytical data did not match 
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with that of flavone 1a. After careful analysis and cross-checking, we realized that we have 

prepared aurone 21a (Scheme 24). 

 

 

Scheme 25: Reassigning the structure 

 

The above-mentioned formation of aurone 21a led us to realize that the cyclization of 

phenol 29a did not result in the formation of chromone 30a. Instead, an aurone precursor 32 

was formed (Scheme 25). 

 

 

Scheme 26: Suzuki coupling to form aurones  

 

This compound 32 was then reacted with various phenylboronic acids 31a-c under 

previously used conditions and each resulted into successful formation of corresponding 

aurone 21a-c (Scheme 26). The analytical data of these compounds matched reasonably with 

their corresponding literature values. 
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Scheme 27: Aurone precursor versus flavone precursor 

 

Even though, this discovery was a setback to our plans of synthesizing flavones, it 

was an interesting way to prepare substituted aurones 21. We decided to use this setback in 

our favor and tried to explore the ways to make chromone 30. We decided to replace the two 

bromo groups with two chloro groups. We were expecting that this change would be 

sufficient to tilt the balance in favor of the formation of chromone 30 instead of aurone 

precursor 32 (Scheme 27). 

 

 

Scheme 28: Reterosynthetic analysis 

 

Scheme 28 outlines the new reterosynthetic analysis which is quite similar to the 

previous approach. The only difference is in the procedure for the preparation of 3,3-

dichloroacrylic acid 37 which is prepared by a literature procedure. 
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Scheme 29: Synthesis 

 

The synthesis started with the preparation of 3,3-dichloroacrylic acid 37 by a 

literature procedure.
41

 Vinyl acetate 33 and bromotrichloromethane 34 were refluxed 

together in the presence of azobisisobutyronitrile to give the addition product 35 in 

quantitative yield. This compound 35 was converted to 3,3-dichloroacrylaldehyde 36 by 

stirring it into a solution of 5% aqueous sulfuric acid for eight hours followed by azeotropic 

distillation and aqueous work-up to give aldehyde 36 in excellent yield. The aldehyde 36 was 

oxidized to 3,3-dichloroacrylic acid 37 by silver oxide oxidation in 60% yield. This acrylic 

acid derivative 37 was then subjected to Steglich esterification conditions in the presence of 

trimethoxyphenol 9a and dimethoxyphenol 9b to give ester 28b-c in good yields. Both esters 

28b and 28c were subjected to Lewis acid catalyzed Fries rearrangement to get rearranged 

phenols 29b and 29c in 40% and 60% yields respectively. The yield of Fries rearranged 

product 29c was much higher than 29b because of the absence of para-methoxy group which 

usually gets demethylated thus reducing the overall yield of the reaction (Scheme 29). 

 

 

Scheme 30: Base mediated cyclization to form chromone 



www.manaraa.com

126 
 

 

At that point, we were set to try the key cyclization experiment. When phenols 29b 

and 29c were subjected to basic conditions using 0.02 N sodium hydroxide solution 

(aqueous), we successfully accomplished corresponding chromones 30b and 30c in 65% and 

68% yields respectively (Scheme 30). 

Scheme 31 summarizes the efforts towards standardization of key coupling reaction. 

Initial attempts with using anhydrous potassium carbonate and cesium carbonate bases along 

with phase transfer catalysts like tetra-n-butylammonium bromide and tetra-n-

butylammonium chloride in the presence of palladium (0) catalyst in refluxing diaoxane 

resulted in the successful product formation. But when the purifications on these products 

were attempted, we quickly discovered that it was a complicated mixture which was really 

difficult to resolve effectively (Scheme 31, Table7 - entry 1-4). 

 

 

Scheme 31: Suzuki coupling – standardization of conditions 
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We then attempted the coupling reaction with various bases in the absence of any 

additive. When anhydrous potassium fluoride was used as a base, even after eighteen hours 

of reflux, the reaction was not complete but it was observed that the pure product was getting 

formed without the formation of any impurities unlike previous cases (Scheme 31, Table 7 – 

entry 5). The coupling was successfully completed in excellent yields with both anhydrous 

cesium carbonate and potassium carbonate to give flavones in 76% and 81% yields 

respectively (Scheme 31, Table 7 – entry 6-7). Since, our best results were obtained by using 

powdered anhydrous potassium carbonate, we decided to use these conditions as the standard 

for all the future reactions. More flavones 1c and 1d were synthesized in 72% and 69% 

yields respectively using chromone 29c and phenylboronic acids 31b-c under standardized 

conditions (Scheme 32).  

 

 

Scheme 32: Suzuki coupling – Synthesis of flavones 

 

After the successes with chromone 29c, we successfully subjected chromone 29b to 

Suzuki coupling with phenylboronic acids 31a and 31c. Both reactions resulted in the 

formation of flavones 1a and 1e in 67% and 68% yields. Analytical data of all the flavones 

synthesized matched with literature values (Scheme 33). 



www.manaraa.com

128 
 

 

Scheme 35: Suzuki coupling – Synthesis of flavones 

 

In conclusion, we successfully developed a new methodology towards the synthesis 

of aurones and flavones. These flavones can be converted to flavonols by well known 

procedures. Though, there is no doubt that more work is needed to further generalize the 

invented routes, the flexibility offered by this route is unprecedented as by substituting the 

halogen from bromo to chloro in intermediate 29 resulted in different cyclized products, each 

of which can serve as a precursor to the library of corresponding aurones or flavones.  

 

Experimental 

Unless otherwise noted, materials were obtained from commercial suppliers and used without 

purification. Tetrahydrofuran and diethyl ether were distilled from sodium and 

benzophenone. Dichloromethane, benzene and diisopropyl amine were distilled over calcium 

hydride. All experiments were performed under an argon atmosphere unless otherwise noted. 

Organic extracts were dried over anhydrous magnesium sulfate. Nuclear magnetic resonance 

experiments were performed with either a Varian 300 MHz or Bruker 400 MHz instrument. 

All chemical shifts are reported relative to CDCl3 (7.27 ppm for 
1
H and 77.23 ppm for 

13
C), 

unless otherwise noted. Coupling constants (J) are reported in Hz with abbreviations: s = 

singlet, d = doublet, t = triplet, q = quartet, m = multiplet. High resolution mass spectra were 

recorded on a Kratos model MS-50 spectrometer. Standard grade silica gel (60 Å, 32-63 μm) 

was used for flash column chromatography. 
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Preparation of ethyl 2-(6-hydroxy-2,3,4-trimethoxyphenyl)-2-oxoacetate (10) 

 

To a solution of phenol 9 (2.0 g, 10.86 mmol) in CH2Cl2, was added titanium tetrachloride 

(2.276 g, 12.0 mmol) at -20 
o
C under argon. To this dark brown solution, ethyl 

chlorooxoacetate (1.64 g, 12.0 mmol) was added dropwise while maintaining temperature at 

below -15 
o
C. Resulting reaction mixture was stirred for 4 h with steady increase in 

temperature to 0 
o
C. After the completion of reaction, the reaction mixture was diluted with 

CH2Cl
2
 and poured over cold HCl (1.0 M) solution. Aqueous layer was separated and 

extracted with CH2Cl2 (3 x 25 ml). Combined organic extracts were washed with HCl (1.0 

M) solution and brine followed by drying over anhydrous MgSO4. Solvent was evaporated in 

vacuo to obtaine the crude title compound. The crude compound was purified by silica gel 

column chromatography using 15% EtOAc + hexanes as solvent system to obtain pure title 

compound 10 in 80% yield as yellow solid. 

1
H-NMR (400MHz, CDCl3) δ 11.95 (s, 1H), 6.25 (s, 1H), 4.38 (q, J = 7.2 Hz, 2H), 3.91 (s, 

3H), 3.91 (s, 3H), 3.77 (s, 3H), 1.40 (t, J = 7.2 Hz, 3H); 
13

C-NMR (100MHz, CDCl3): δ 

189.3, 164.2, 162.9, 154.2, 134.1, 104.7, 96.0, 62.0, 61.6, 61.1, 56.5, 14.1; MS (m/z): 307 

(M+Na
+
), 239, 211; HRMS calcd for C13H16O7: 284.0900, found: 284.0896. 

 

Preparation of ethyl 2-(6-(cyano(phenyl)methoxy)-2,3,4-trimethoxyphenyl)-2-oxo-

acetate (12a)  

 

To a slurry of NaH (0.041 g, 1.71 mmol) in dry DMF under argon, phenol 10 (0.44 g, 1.55 

mmol) was added at 0 
o
C. Resulting reaction mixture was stirred at 0 

o
C for 15 minutes 
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followed by the addition of 2-bromo-2-phenylacetonitrile (0.33 g, 1.71 mmol) at same 

temperature. Reaction mixture was then stirred at 60 
o
C for 2 h. After the completion of the 

reaction, reaction mixture was quenched by adding saturated NH4Cl solution. Reaction 

mixture was then extracted with EtOAc (3 x 100 ml). Combined organic extracts were then 

washed with water and brine, dried over anhydrous MgSO4, filtered and evaporated in vacuo 

to obtain crude 12a. The crude compound was purified by column chromatography using 

20% EtOAc/hexanes as elutent to get pure 12a in 70% yield; 
1
H-NMR (400MHz, CDCl3) δ 

7.63 – 7.69 (m, 2H), 7.35 – 7.50 (m, 3H), 6.62 (s, 1H), 5.96 (s, 1H), 4.21 (m, 2H), 3.91 (s, 

6H), 3.83 (s, 3H), 1.31 (t, J = 7.2 Hz, 3H); 
13

C-NMR (100MHz, CDCl3): δ 184.7, 163.6, 

158.5, 155.0, 152.9, 138.5, 132.5, 130.4, 129.3, 127.9, 116.9, 114.3, 100.0, 72.4, 62.4, 62.3, 

61.2, 56.6, 14.2; MS (m/z): 399, 327, 325, 283, 282, 254, 211, 210, 209; HRMS calcd for 

C21H21NO7: 399.1318, found: 399.1326 

 

Preparation of ethyl 2-(6-(cyano(phenyl)methoxy)-2,3,4-trimethoxyphenyl)-2-hydroxy-

acetate (16a) 

 

In a round bottom flask, starting material 12a (0.5 g, 1.25 mmol) was suspended in 

anhydrous ethanol under inert conditions in an ice-acetone bath. To this, NaBH4 was added 

and the reaction mixture was stirred at room temperature for 3 h. After the completion of 

reaction, the reaction mixture was quenched with HCl (2.0 M) solution until the gas 

evolution stopped. Mixture was then diluted with water and extracted with EtOAc (2 x 100 

ml). Combined organic extracts were then washed with water and brine, dried over 

anhydrous MgSO4, filtered and evaporated in vacuo to obtain crude 16a. The crude 

compound was purified by column chromatography using 20% EtOAc/hexanes as elutent to 

get pure 16a in 83% yield; 
1
H-NMR (400MHz, CDCl3) δ 7.55 – 7.65 (m, 2H), 7.43 – 7.53 

(m, 3H), 6.55 (d, J = 6.8 Hz, 1H), 5.81 (d, J = 13.2 Hz, 1H), 5.39 (dd, J = 24.4 Hz, J = 6.4 
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Hz, 1H), 4.18 (m, 2H), 3.89 (d, J = 9.2 Hz, 3H), 3.85 (d, J = 7.6 Hz, 3H), 3.82 (d, J = 5.2 Hz, 

3H), 3.54 (m, 1H), 1.18 (dt, 
t
J =  7.2 Hz, 

d
J = 4.8 Hz, 3H). 

 

Preparation of 3-hydroxy-5,6,7-trimethoxy-2-phenyl-4H-chromen-4-one (4a) 

 

To a solution of diisopropylamine (0.075 g, 0.75 mmol) in dry THF (10 mL) under argon, 

was added n-BuLi (2.5 M in hexanes; 0.30 ml, 0.71 mmol) at -78°C. The mixture was 

warmed to -40°C and stirred at this temperature for 45 minutes.  The solution was returned to 

-78°C and a solution of 16a (0.13 g, 0.32 mmol) in dry THF was added to it. Resulting 

reaction mixture was warmed to room temperature and then refluxed with monitoring. After 

the completion of the reaction, reaction mixture was quenched with HCl (1.0 M) solution and 

most of the solvent was evaporated in vacuo. Residue was then diluted with water and 

extracted with EtOAc (3 x 50 ml). Combined organic extracts were then washed with water 

and brine, dried over anhydrous MgSO4, filtered and evaporated in vacuo to obtain crude 4a. 

The crude compound was then purified by column chromatography using 40% 

EtOAc/hexanes as elutent to get pure flavonol 4a in 61% yield; 
1
H-NMR (400MHz, CDCl3) 

δ 8.21 (d, J = 8.6 Hz, 2H), 7.51 (t, J = 6.8 Hz, 2H), 7.44 (t, J = 7.2 Hz, 1H), 6.79 (s, 1H), 4.03 

(s, 3H), 3.98 (s, 3H), 3.92 (s, 3H); 
13

C-NMR (100MHz, CDCl3): δ 172.0, 158.6, 154.0, 151.9, 

142.7, 140.1, 138.3, 131.3, 130.0, 128.7, 127.5, 110.0, 96.3, 62.5, 61.8, 56.6; MS (m/z): 329, 

328, 326, 314, 313, 267, 167, 105, 77, 69. 

 

Preparation of 3,5,6,7-tetramethoxy-2-phenyl-4H-chromen-4-one (4b) 
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Flavonols 4a (0.04 g, 0.12 mmol) was taken in dry actone and anhydrous K2CO3 was added 

to it under argon. To this, methyl iodide (0.03 g, 0.18 mmol) was added and resulting 

reaction mixture was refluxed for 6 h. After the completion of reaction, the reaction mixture 

was filtered through celite and evaporated to dryness. Residue was then diluted with water 

and extracted with EtOAc (3 x 20 ml). Combined organic extracts were then washed with 

water and brine, dried over anhydrous MgSO4, filtered and evaporated in vacuo to obtain 

crude 4b. The crude compound was then purified by column chromatography using 50% 

EtOAc/hexanes as elutent to get pure flavonol 4b in 61% yield; 
1
H-NMR (400MHz, CDCl3) 

δ 8.06 (dd, J = 8.0 Hz, J = 2.0 Hz, 2H), 7.45 – 7.53 (m, 3H), 6.75 (s, 1H), 4.00 (s, 3H), 3.96 

(s, 3H), 3.91 (s, 3H), 3.86 (s, 3H); 
13

C-NMR (100MHz, CDCl3): δ 174.0, 157.9, 153.9, 153.5, 

152.6, 141.6, 140.4, 131.0, 130.6, 128.7, 128.6, 128.4, 113.4, 96.3, 62.4, 61.8, 60.3, 56.5; MS 

(m/z): 342, 327, 323, 297, 284, 283, 241, 195, 167, 129, 105, 88, 76, 68; HRMS calcd for 

C19H18O6: 342.1103, found: 342.1108. 

 

Representative procedure for the preparation of 28a-c 

A solution of 3,4,5-trimethoxyphenol 9 (2.30 g, 12.44 mmol), acrylic acid derivative 

37 (1.93 g, 13.69 mmol) and DMAP (0.15 g, 1.24 mmol) in 10 ml of dry CH2Cl2 and 2 ml of 

dry DMF was treated at 0 
o
C under argon with DCC (2.60 g, 12.44 mmol). The mixture was 

stirred for 5 min at 0 
o
C and 30 min at room temperature. After the completion of reaction, 

reaction mixture was filtered through celite and diluted with CH2Cl2 followed by washing 

twice with HCl (1.0 M) and twice with saturated solution of NaHCO3. The organic phase was 

washed with brine, dried over anhydrous MgSO4 and evaporated in vacuo. Residue was 

purified by column chromatography using 12.5% EtOAc/hexanes as elutent to give pure 

product. 

 

3,4,5-Trimethoxyphenyl 3,3-dibromoacrylate (28a) 
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Yield = 71%; 
1
H NMR (400MHz, CDCl3) δ 7.20 (s, 1H), 6.36 (s, 2H), 3.82 (s, 6H), 3.81 (s, 

3H); 
13

C-NMR (100MHz, CDCl3): δ 161.1, 153.6, 146.2, 136.1, 127.1, 109.9, 99.0, 61.1, 

56.4; MS (m/z): 396.9113; HRMS calcd for C12H12Br2O5: 393.9051, found: 393.9056. 

 

3,4,5-Trimethoxyphenyl 3,3-dichloroacrylate (28b) 

 

Yield = 71%; 
1
H-NMR (400MHz, CDCl3) δ 6.54 (s, 1H), 6.33 (s, 2H), 3.78 (s, 9H); 

13
C-

NMR (100MHz, CDCl3): δ 160.7, 153.5, 146.1, 140.1, 135.9, 119.2, 119.1, 98.9, 98.9, 98.9, 

60.9, 56.1; MS (m/z): 307.0128; HRMS calcd for C12H12Cl2O5: 306.0062, found: 306.0055. 

 

3,5-Dimethoxyphenyl 3,3-dichloroacrylate (28c) 

 

Yield = 77%; 
1
H-NMR (400MHz, CDCl3) δ 6.58 (d, J = 0.6 Hz, 1H), 6.36 (s, 1H), 6.28 – 

6.32 (m, 2H), 3.77 (s, 6H); 
13

C-NMR (100MHz, CDCl3): δ 161.3, 160.7, 151.7, 140.2, 119.4, 

119.3, 100.2, 100.1, 98.7, 55.7; MS (m/z): 277.0026, 225.1957; HRMS calcd for 

C11H10Cl2O4: 275.9956, found: 275.9953. 

 

Representative procedure for Fries rearrangement to prepare 29a-c 

Ester 28b (1.0 g, 3.26 mmol) was taken in dry 1,2-dichloroethane (75 ml) and added 

to a slurry of AlCl3 ( 0.48 g, 3.60 mmol) in 1,2-dichloroethane (25 ml) at 0 
o
C under argon. 

Resulting dark brown solution was refluxed with monitoring. After the completion of 

reaction, the reaction mixture was poured over 1:1 mixture of ice and HCl (1.0 M) and stirred 

for 30 min. Organic phase was separated and aqueous layer was extracted with CH2Cl2 (3 x 

100 ml). Combined organic phases were then washed with water, brine and dried over 

anhydrous MgSO4. Solvent was evaporated under reduced pressure and crude product was 

purified by column chromatography using 10% EtOAc/hexanes as elutent.  



www.manaraa.com

134 
 

 

 

3,3-Dibromo-1-(6-hydroxy-2,3,4-trimethoxyphenyl)prop-2-en-1-one (29a) 

 

Yield: 41%; 
1
H-NMR (400MHz, CDCl3) δ 12.78 (s, 1H), 7.86 (s, 1H), 6.24 (s, 1H), 3.94 (s, 

3H), 3.88 (s, 3H), 3.77 (s, 3H); 
13

C-NMR (100MHz, CDCl3): δ 191.1, 162.9, 161.6, 154.8, 

137.6, 108.2, 97.6, 96.6, 96.5, 61.9, 61.4, 56.5; MS (m/z): 396.9113; HRMS calcd for 

C12H12Br2O5: 393.9051, found: 393.9056. 

 

3,3-Dichloro-1-(6-hydroxy-2,3,4-trimethoxyphenyl)prop-2-en-1-one (29b) 

 

Yield: 40%; 
1
H-NMR (400MHz, CDCl3) δ 12.90 (s, 1H), 7.40 (s, 1H), 6.25 (s, 1H), 3.93 (s, 

3H), 3.89 (s, 3H), 3.78 (s, 3H); 
13

C-NMR (100MHz, CDCl3): δ 189.8, 162.8, 161.3, 154.7, 

135.3, 131.4, 128.9, 108.4, 96.6, 61.9, 61.4, 56.4; MS (m/z): 307.0128; HRMS calcd for 

C12H12Cl2O5: 306.0062, found: 306.0055. 

 

3,3-Dichloro-1-(2-hydroxy-4,6-dimethoxyphenyl)prop-2-en-1-one (29c) 

 

Yield: 60%; 
1
H-NMR (400MHz, CDCl3) δ 13.46 (s, 1H), 7.35 (s, 1H), 6.07 (d, J = 4.0 Hz, 

1H), 5.90 (d, J = 2.2 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 3H); 
13

C-NMR (100MHz, CDCl3): δ 

189.3, 168.4, 167.3, 162.3, 131.6, 129.3, 106.1, 94.0, 91.5, 56.3, 55.9; MS (m/z): 277.0026, 

241.0263, 223.0596, 197.0805; HRMS calcd for C11H10Cl2O4: 275.9956, found: 275.9953. 

 

Representative procedure for cyclization reaction to prepare 30a-c 
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Phenol 29b was taken in THF (5 ml) and to this, NaOH (33.0 ml, 0.02 N) solution 

was added at 0 
o
C. Resulting reaction mixture was stirred at room temperature for 3 h with 

monitoring. After the completion of reaction, reaction mixture was acidified by HCl (1.0 M) 

to a pH 5 and extracted with EtOAc (3 x 50 ml). Combined organic extracts were then 

washed with water and brine, dried over anhydrous MgSO4, filtered and evaporated in vacuo 

to obtain crude chromone 30b. The crude compound was then purified by column 

chromatography using 50% EtOAc/hexanes as elutent. 

 

2-(Bromomethylene)-4,5,6-trimethoxybenzofuran-3(2H)-one (30a) 

 

Yield: 64%; 
1
H-NMR (400MHz, CDCl3) δ 6.74 (s, 1H), 6.48 (s, 1H), 4.19 (s, 3H), 3.94 (s, 

3H), 3.78 (s, 3H); 
13

C-NMR (100MHz, CDCl3): δ 177.4, 164.0, 162.4, 152.3, 152.0, 136.9, 

107.2, 94.8, 90.8, 62.5, 61.8, 56.9; MS (m/z): 314.9858; HRMS calcd for C12H11BrO5: 

314.9863, found: 314.9858. 

 

2-Chloro-5,6,7-trimethoxy-4H-chromen-4-one (30b) 

 

Yield: 65%; 
1
H-NMR (400MHz, CDCl3) δ 6.70 (s, 1H), 6.24 (s, 1H), 3.94 (s, 6H), 3.89 (s, 

3H); 
13

C-NMR (100MHz, CDCl3): δ 175.8, 158.0, 154.7, 153.9, 152.8, 141.1, 112.1, 111.8, 

96.3, 62.4, 61.7, 56.5; MS (m/z): 271.0361, 139.9717; HRMS calcd for C12H11ClO5: 

270.0295, found: 270.0288. 

 

2-Chloro-5,7-dimethoxy-4H-chromen-4-one (30c) 
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Yield: 68%; 
1
H-NMR (400MHz, CDCl3) δ 6.43 (d, J = 2.1 Hz, 1H), 6.36 (d, J = 2.0 Hz, 1H), 

6.22 (s, 1H), 3.91 (s, 3H), 3.86 (s, 3H); 
13

C-NMR (100MHz, CDCl3): δ 176.2, 164.4, 161.1, 

160.1, 153.5, 112.5, 108.4, 97.0, 92.9, 56.7, 56.1; MS (m/z): 241.0260, 223.0595, 197.0804; 

HRMS calcd for C11H9ClO4: 240.0189, found: 240.0187. 

 

Representative procedure for Suzuki coupling to prepare aurones 21a-c 

A 100 ml oven dried round bottom flask, equipped with a stir bar is charged with 

anhydrous dioxane (10 ml), powdered anhydrous K2CO3 (0.26 g, 1.90 mmol), phenylboronic 

acid (31a) (0.1161 g, 0.95 mmol) and aurone precursor 30a (0.20 g, 0.635 mmol). Nitrogen 

was passed through the resulting reaction mixture for at least 20 min. To this was added the 

Pd(PPh3)4 (0.037g, 0.032 mmol) catalyst and resulting reaction mixture was heated to 90 
o
C 

and stirred with constant monitoring. After the completion of the reaction (6 h), reaction 

mixture was filtered through celite and evaporated under reduced pressure. The residue was 

partitioned between water and ethyl acetate and organic phase was separated. Aqueous layer 

was washed with ethyl acetate (2 x 30 ml) and all organic phases were mixed together, 

washed with brine and dried over anhydrous magnesium sulfate. Solvent was evaporated 

under reduced pressure to obtain crude aurone 21a which was purified by silica gel column 

chromatography using 50% EtOAc:hexanes as elutent to obtain pure aurone 21a in 85% 

isolated yield. 

 

(Z)-2-benzylidene-4,5,6-trimethoxybenzofuran-3(2H)-one (21a) 

 

Yield: 85%; 
1
H-NMR (400MHz, CDCl3) δ 7.86 (d, J = 8.0 Hz, 2H), 7.43 (t, J = 8.0 Hz, 2H), 

7.37 (d, J = 4.0 Hz, 1H), 6.76 (s, 1H), 6.54 (s, 1H), 4.25 (s, 3H), 3.97 (s, 3H), 3.82 (s, 3H); 
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13
C-NMR (100MHz, CDCl3): δ 181.0, 164.3, 161.9, 151.9, 147.9, 136.8, 132.7, 131.4, 129.7, 

129.0, 111.4, 107.2, 90.8, 62.6, 61.9, 56.9; MS (m/z): 313.11, 187.08, 121.05; HRMS calcd 

for C18H16O5: 313.1071, found: 313.1074. 

 

(Z)-4,5,6-trimethoxy-2-(4-methoxybenzylidene)benzofuran-3(2H)-one (21b) 

 

Yield: 81%; 
1
H-NMR (400MHz, CDCl3) δ 7.82 (d, J = 12.0 Hz, 2H), 6.95 (d, J = 8.0 Hz, 

2H), 6.75 (s, 1H), 6.54 (s, 1H), 4.25 (s, 3H), 3.97 (s, 3H), 3.86 (s, 3H), 3.82 (s, 3H); 
13

C-

NMR (100MHz, CDCl3): δ 181.0, 164.0, 161.6, 160.9, 151.8, 146.8, 136.7, 133.2, 125.4, 

114.6, 111.7, 107.5, 90.7, 62.7, 61.9, 56.8, 55.6; MS (m/z): 343.1169; HRMS calcd for 

C19H18O6: 342.1103, found: 342.1096. 

 

(Z)-2-(3,4-dimethoxybenzylidene)-4,5,6-trimethoxybenzofuran-3(2H)-one (21c) 

 

Yield: 80%; 
1
H-NMR (400MHz, CDCl3) δ 7.43 – 7.48 (m, 2H), 6.93 (d, J = 8.0 Hz, 1H), 

6.74 (s, 1H), 6.51 (s, 1H), 4.26 (s, 3H), 3.99 (s, 3H), 3.97 (s, 3H), 3.94 (s, 3H), 3.82 (s, 3H); 

13
C-NMR (100MHz, CDCl3): δ 180.9, 163.9, 161.6, 151.8, 150.7, 149.2, 146.8, 136.8, 125.7, 

125.6, 113.7, 112.0, 111.4, 107.5, 90.7, 62.7, 61.9, 56.9, 56.2, 56.1; MS (m/z): 373.1287; 

HRMS calcd for C20H20O7: 372.1209, found: 372.1214. 

 

Representative procedure for Suzuki coupling to prepare flavones 1a-e 

A 100 ml oven dried round bottom flask, equipped with a stir bar is charged with 

anhydrous dioxane (10 ml), powdered anhydrous K2CO3 (0.345 g, 2.49 mmol), 
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phenylboronic acid (31a) (0.2030 g, 1.66 mmol) and chromone 30c (0.20 g, 0.831 mmol). 

Nitrogen was passed through the resulting reaction mixture for at least 20 min. To this was 

added the Pd(PPh3)4 (0.048 g, 0.042 mmol) catalyst and resulting reaction mixture was 

refluxed with constant monitoring. After the completion of the reaction (18 h), reaction 

mixture was filtered through celite and evaporated under reduced pressure. The residue was 

partitioned between water and ethyl acetate and organic phase was separated. Aqueous layer 

was washed with ethyl acetate (2 x 30 ml) and all organic phases were mixed together, 

washed with brine and dried over anhydrous magnesium sulfate. Solvent was evaporated 

under reduced pressure to obtain crude flavone 1b which was purified by silica gel column 

chromatography using 2% MeOH:DCM as elutent to obtain pure flavone 1b in 74% isolated 

yield. 

 

5,6,7-Trimethoxy-2-phenyl-4H-chromen-4-one (1a) 

 

Yield: 67%; 
1
H-NMR (400MHz, CDCl3) δ 7.84 – 7.88 (m, 2H), 7.50 (d, J = 2.0 Hz, 2H), 

7.48 (d, J = 2.0 Hz, 1H), 6.80 (s, 1H), 6.66 (s, 1H), 3.98 (s, 3H), 3.97 (s, 3H), 3.91 (s, 3H); 

13
C-NMR (100MHz, CDCl3): δ 177.4, 161.3, 157.9, 154.7, 152.7, 140.5, 131.7, 131.5, 129.1, 

126.1, 113.1, 108.6, 96.5, 62.4, 61.7, 56.5. 

 

 5,7-dimethoxy-2-phenyl-4H-chromen-4-one (1b) 

 

Yield: 74%; 
1
H-NMR (400 MHz, CDCl3) δ 7.84 – 7.88 (m, 2H), 7.46 – 7.52 (m, 3H), 6.68 (s, 

1H), 6.57 (d, J = 2.3 Hz, 1H), 6.37 (d, J = 2.3 Hz, 1H), 3.95 (s, 3H), 3.91 (s, 3H); 
13

C-NMR 

(100 MHz, CDCl3): δ 177.8, 164.2, 161.0, 160.8, 160.1, 131.7, 131.4, 129.1, 126.1, 109.3, 
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109.2, 96.4, 93.0, 56.7, 56.0; MS (m/z): 283.0963, 269.0804; HRMS calcd for C17H14O4: 

282.0892, found: 282.0890. 

 

5,7-dimethoxy-2-(4-methoxyphenyl)-4H-chromen-4-one (1c) 

 

Yield: 72%; 
1
H-NMR (400MHz, CDCl3) δ 7.78 (d, J = 8.0 Hz, 2H), 6.96 (d, J = 8.0 Hz, 2H), 

6.56 (s, 1H), 6.51 (d, J = 4.0 Hz, 1H), 6.32 (d, J = 4.0 Hz, 1H), 3.92 (s, 3H), 3.88 (s, 3H), 

3.85 (s, 3H); 
13

C-NMR (100 MHz, CDCl3): δ 177.6, 163.8, 161.9, 160.7, 160.6, 159.7, 127.5, 

123.7, 114.3, 109.1, 107.6, 96.0, 92.8, 56.4, 55.7, 55.4; MS (m/z): 313.1062; HRMS calcd for 

C18H16O5: 313.0998, found: 313.0989. 

 

2-(3,4-dimethoxyphenyl)-5,7-dimethoxy-4H-chromen-4-one (1d) 

 

Yield: 69%; 
1
H-NMR (400MHz, CDCl3) δ 7.46 (d, J = 8.0 Hz, 1H), 6.92 (d, J = 8.0 Hz, 1H), 

6.57 (s, 1H), 6.52 (s, 1H), 6.33 (s, 1H), 3.94 (s, 3H), 3.92 (s, 3H), 3.89 (s, 3H); 
13

C-NMR 

(100 MHz, CDCl3): δ 177.8, 164.1, 161.0, 160.8, 160.0, 151.8, 149.3, 124.1, 119.6, 111.2, 

109.3, 108.6, 108.1, 108.0, 96.3, 93.0, 56.6, 56.3, 56.0; MS (m/z): 343.1177, 329.1014; 

HRMS calcd for C19H18O6: 342.1103, found: 342.1104. 
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GENERAL CONCLUSION 

 

In this dissertation, we have investigated the synthesis of various biologically 

important aromatic heterocycles.  

In the first chapter, use of phosphazene base P4-t-Bu towards generating benzylic 

anions is described. The synthetic route features the formation of three distinct aromatic 

heterocycles via a novel cyclodehydration step. Additionally, we synthesized indolo[2,1-a] 

based natural product ortho-methylcryptaustoline iodide and 2,3-diarylbenzo[b]furan based 

amurensin H. The key step in the total synthesis of both natural products was P4-t-Bu 

mediated cyclization. 

The second chapter describes our efforts towards the development of new abelson 

kinase inhibitors. Our investigation in this direction led us to successfully synthesize a 

variety of substituted pyrido[2,3-d]pyrimidines. Some of the compounds thus made turned 

out to be better inhibitors of Abelson kinase than currently available drugs. 

The third chapter discusses our efforts towards the synthesis of various flavonoids. 

We initially targeted flavonols but eventually developed a novel methodology which can be 

used to synthesize either aurones or flavones by one small modification. We also successfully 

prepared many naturally occurring flavonols and flavones using this novel method. 
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